Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:43:04.012Z Has data issue: false hasContentIssue false

The Effect of Crystallographic Imperfections on the Photoluminescence of ZnO Thin Films

Published online by Cambridge University Press:  17 March 2015

Matthew W. Kelly
Affiliation:
Materials Science & Engineering Program, Youngstown State University, Youngstown, Ohio 44555, USA.
Tom N. Oder
Affiliation:
Physics & Astronomy, Youngstown State University, Youngstown, Ohio 44555, USA.
C. Virgil Solomon
Affiliation:
Mechanical & Industrial Engineering, Youngstown State University, Youngstown, Ohio 44555, USA.
Get access

Abstract

ZnO thin films were synthesized by radio-frequency (RF) magnetron sputtering of high purity ZnO solid targets on sapphire substrates. Depositions were carried out at selected temperatures between 293 K and 1173 K, and post-deposition annealing was performed at 1173 K for 3 min. in an O2 atmosphere. Samples for electron microscopy investigations were prepared by lift-out technique in a multi-beam FIB/SEM instrument. The ZnO thin films show generally uniform thickness (about 1µm), determined by transmission electron microscopy (TEM) imaging. Irrespective of the deposition temperature, the ZnO thin films are polycrystalline, with individual grains exhibiting columnar morphology with the long axis oriented perpendicular to the ZnO/sapphire interface. The grain size varies with the deposition temperature, and a direct correlation between grain size and photoluminescence has been observed. Analyses performed using low-temperature photoluminescence spectroscopy measurements at 12 K revealed luminescence peaks at 3.361, 3.317, 3.218 and 3.115 eV. The intensity of the luminescence peak at 3.317 eV decreased with increasing deposition temperature. The films deposited at lower temperatures also exhibited a higher density of stacking faults as observed from the atomic resolution TEM. The crystallographic imperfections/photoluminescence relationship is not clear. The purpose of this study is to quantify the observed crystallographic imperfections and understand their effect on the photoluminescence of undoped ZnO thin films deposited on sapphire substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jin, B. J., Im, S., and Lee, S. Y., Thin Solid Films, vol. 366, no. 1, pp. 107110, 2000.CrossRefGoogle Scholar
Schirra, M., Schneider, R., Reiser, A., Prinz, G. M., Feneberg, M., Biskupek, J., Kaiser, U., Krill, C. E., Thonke, K., and Sauer, R., Phys. Rev. B, vol. 77, no. 12, Mar. 2008.CrossRefGoogle Scholar
Oder, T.N., Smith, A., Freeman, M., McMaster, M., Cai, B., and Nakarmi, M.L., J. Electronic Mater. DOI: 10.1007/s11664-014-3074-9, 2014.Google Scholar
Look, D. C., Renlund, G. M., Burgener, R. H., and Sizelove, J. R., Appl. Phys. Lett., vol. 85, no. 22, p. 5269, 2004.CrossRefGoogle Scholar
Ohtomo, A., Kawasaki, M., Sakurai, Y., Yoshida, Y., Koinuma, H., Yu, D., Tung, Z.K., Wong, G.K.L., and Segawa, Y., Mater. Sci. Eng. 1354, 24, 1998.CrossRefGoogle Scholar
Bethke, S., Pan, H., and Wessels, B.W., Appl. Phys. Lett. 52, 138, 1988.CrossRefGoogle Scholar
Mayer, B.K., Alvies, H., Hoffman, D.M., Kriegseis, W., Forester, D., Bertraim, F., Christen, J., Hoffman, A., Straburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V., Phy. Status Solidi B 241, 231, 2004.CrossRefGoogle Scholar
Hwang, D.K., kim, H.S., Lim, J.H., Oh, J.Y., Yang, J.H., Park, S.J., Kim, K.K., Look, D.C., and Park, Y.S., Appl. Phys. Lett. 86, 151917, 2005.CrossRefGoogle Scholar
Wagner, M.R., Callsen, G., Reparaz, J.S., Schulze, J.-H., Kirste, R., Hoffman, A., Rodina, A.V., Phillips, M.R., Lautenschlager, S., Eisermann, S., and Meyer, B.K., Phys. Rev. B 84, 035313, 2011.CrossRefGoogle Scholar
Wagner, M.R., Zimmer, P., Hoffman, A., and Thomsen, C., Phys. Status Solidi (RRL), 1, 169, 2007.CrossRefGoogle Scholar
Fonoberov, V.A., Alim, K.A., Balandin, A.A., Xiu, F., and Liu, J., Phys. Rev. B 73, 165317, 2006.CrossRefGoogle Scholar
Look, D.C. and Claflin, B., Phys. Status Solidi, B 241, 624, 2004.CrossRefGoogle Scholar
Yang, S., Kuo, C.C., Liu, W.-R., Lin, B.H., Hsu, H.-C., Hsu, C.-H., and Hsieh, W.F., Appl. Phys. Lett. 100, 101907, 2012.CrossRefGoogle Scholar
Duclere, J.R., Doggett, B., Henry, M.O., McGlynn, E., Rajendra Kumar, R.T., Mosnier, J.-P., Perrin, A., and Guilloux-Viri, M., J. Appl. Phys. 101, 013509, 2007.CrossRefGoogle Scholar
Yang, S., Lin, B.H., Liu, W.-R., Lin, J.-H., Chang, C.-S., Hsu, C.H., and Hsieh, W.F., Crystal Growth & Design, vol. 9, 51845189, 2009.CrossRefGoogle Scholar
Giannuzzi, L.A., Kempshall, B.W., Schwarz, S.M., Lomness, J.K., Prenizer, B.I., and Stevie, F.A., Introduction to Focused Ion Beam, Springer, pp. 201228, 2005.CrossRefGoogle Scholar
Yang, S., Lin, B.H., kuo, C.C., Hsu, H.C., Liu, W.-R., Erikssson, M.O., Holtz, P.-O., Chang, C.-S., Hsu, C.-H., and Hsieh, W.F., Crystal Growth & Design, 12, 47454751, 2012.CrossRefGoogle Scholar