Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T15:34:01.440Z Has data issue: false hasContentIssue false

Effect of Controlled Corrosion Attack With HCl Acid on the Fatigue Endurance of Aluminum Alloy AISI 6063-T5, under Rotating Bending Fatigue Tests

Published online by Cambridge University Press:  05 March 2013

G. M. Domínguez-Almaraz
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Santiago Tapia No. 403, Col. Centro, Morelia, Michoacán 58000, México. LaboratoireM3M-IRTES (EA 7274), Université de Technologie de Belfort-Montbéliard, 90010 Belfort, France
J. L. Ávila-Ambriz
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Santiago Tapia No. 403, Col. Centro, Morelia, Michoacán 58000, México.
F. Peyraut
Affiliation:
LaboratoireM3M-IRTES (EA 7274), Université de Technologie de Belfort-Montbéliard, 90010 Belfort, France
E. Cadenas-Calderón
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Santiago Tapia No. 403, Col. Centro, Morelia, Michoacán 58000, México.
Get access

Abstract

Corrosion attack is implemented on the aluminum alloy AISI 6063-T5 for six different non corroded and pre-corroded specimens. Concerning pre-corroded specimens, they are divided in two groups; the first one is immersed for 1 and 2 minutes in hydrochloric acid with 20% concentration, and the second group for 2, 4, 6 minutes of immersion but in HCl with 38% of concentration. Rotating bending fatigue tests are carried out on corroded and non-corroded specimens at the frequency of 50 Hz, at room temperature and without control of environmental humidity. Loading conditions are fixed by Finite Element numerical simulation; the loading ranges are 90%, 80%, 70% and 60% of the yield stress of this aluminum alloy. A numerical simulation study is carried out by means of the Ansys software to investigate the stress concentration factor variation induced by the proximity of two close pitting holes: in longitudinal and transversal direction regarding the principal applying loading. Finally, optical microscopy is used to analyze the fracture surfaces in longitudinal and transversal directions, in order to establish possible causes of fatigue fracture.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hirsch, J., “Virtual Fabrication of Aluminum Products (Microstructural Modeling in Industrial Aluminium Fabrication Process)”, Wiley-VCH, First Ed. (2006).Google Scholar
“Aluminum for Future Generations: Sustainability Update 2005” (Haymarket, London, UK: International Aluminum Institute, 2005).Google Scholar
Das, S. K., “Designing Aluminum Alloys for a Recycle-Friendly World, ” Light Metal Age, June (2006) 2633.Google Scholar
Scamans, G.M., Birbilis, N., Buchheit, R.G., “3.08-Corrosion of Aluminum and its Alloys”, Shreir's Corrosion, Vol. 3 (2009) 19742010.Google Scholar
Medved, J.J., Breton, M., Irving, P.E., “Corrosion pit size distributions and fatigue lives—a study of the EIFS technique for fatigue design in the presence of corrosion”, International Journal of Fatigue, Vol. 26 (2004) 7180.CrossRefGoogle Scholar
Fridlyander, I.N., Sister, V.G., Grushko, O.E., Berstenev, V.V., Sheveleva, L.M. and Ivanova, L.A., “Aluminum Alloys: Promising Materials in the Automotive Industry”, Metal Science and Heat Treatment, Vol. 44 (2002) 365370.CrossRefGoogle Scholar
Villalobos-Gutiérrez, C.J., Gedler-Chacón, G.E., La Barbera-Sosa, J.G., Piñeiro, A., Staia, M.H., Lesage, J., Chicot, D., Mesmacque, G. and Puchi-Cabrera, E.S., “Fatigue and Corrosion Fatigue Behavior of an AA6063-T6 Aluminum Alloy Coated with a WC–10Co–4Cr Alloy Deposited by HVOF Thermal Spraying”, Surf. & Coating Tech. 2012, Vol. 18 (2008) 45724577.CrossRefGoogle Scholar
Dominguez Almaraz, G. M., Guzmán Tapia, M., Patent No. 276818, Mexico (2010); “High Speed Rotating Bending Fatigue Machine”.Google Scholar
Domínguez Almaraz, G. M., Ávila Ambriz, J. L., Cadenas Calderón, E. and Villalón López, J. J. (2012), “Rotating Bending Fatigue Endurance and Effect of Controlled Corrosion on the AISI-SAE 6063-T5 Aluminum Alloy”, MRS Proceedings/Vol. 1373/2012, doi:10.1557/opl.2012.308.CrossRefGoogle Scholar
Sahlaoui, H., Makhlouf, K., Sidhom, H., Philibert, J., “Effects of aging conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: experimental and modeling results”, Mat. Sci. and Eng., Vol. 372 (2004), 98118.CrossRefGoogle Scholar
Kokawa, H., Shimada, M., Wang, Z.J., Sato, Y.S., Michiuchi, M., “Grain boundary engineering for intergranular corrosion resistant austenitic stainless steel” Key Eng. Mat, Vol. 261263 (2004), 10051010.CrossRefGoogle Scholar