Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T17:32:09.138Z Has data issue: false hasContentIssue false

Effect of Composition on The Morphology and Electro-Optical Properties of Physically Crosslinked Liquid Crystals

Published online by Cambridge University Press:  10 February 2011

A. Schneider
Affiliation:
Institut für Makromolekulare Chemie, Albert-Ludwigs Universität Freiburg, D-79104 Freiburg i.Br., Germany
S. Geppert
Affiliation:
Institut für Makromolekulare Chemie, Albert-Ludwigs Universität Freiburg, D-79104 Freiburg i.Br., Germany
R.J. Spontak
Affiliation:
Institut für Makromolekulare Chemie, Albert-Ludwigs Universität Freiburg, D-79104 Freiburg i.Br., Germany
W. Gronski
Affiliation:
Institut für Makromolekulare Chemie, Albert-Ludwigs Universität Freiburg, D-79104 Freiburg i.Br., Germany
H. Finkelmann
Affiliation:
Institut für Makromolekulare Chemie, Albert-Ludwigs Universität Freiburg, D-79104 Freiburg i.Br., Germany
Get access

Abstract

Addition of an ABA triblock copolymer to a midblock-selective solvent can, depending on copolymer/blend composition and the magnitude of block-block and block-solvent interactions, result in the formation of a physical network that is stabilized by aggregates of the incompatible A-block. In this work, an ABA copolymer with a nematic side-chain liquid crystal midblock is added to a low-molar-mass nematic liquid crystal (LC) in an effort to produce a comparable copolymer network and bind the LC matrix. This nanostructured system, designated a physically crosslinked liquid crystal (PCLC), may not suffer as much from the constraint-induced LC anchoring problems associated with conventional polymer-dispersed liquid crystals (PDLCs). Results presented here demonstrate that hierarchical phase behavior must be carefully considered in the design of PCLCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Drzaic, P.S., Liquid Crystal Dispersions (World Scientific, Singapore, 1995), pp. 1198.Google Scholar
2 LeClercq, L., Maschke, U., Ewen, B., Coqueret, X., Mechernene, L., Benmouna, M., Liq. Cryst. 26, 415 (1999).Google Scholar
3 Nastal, E., Zuranska, E., Mucha, M., J. Appl. Polym. Sci. 71, 455 (1999).Google Scholar
4 Chan, P.K. and Rey, A.D., Liq. Cryst. 23, 677 (1997).Google Scholar
5 Mei, E.W. and Higgins, D.A., I. Phys. Chem. A 102, 7558 (1998).Google Scholar
6 Date, M., Takeuchi, Y., Kato, K., J. Phys. D-Appl. Phys. 31, 2225 (1998).Google Scholar
7 Herod, T.E. and Duran, R.S., Langmuir 14, 6956 (1998).Google Scholar
8 Mucha, M. and Nastal, E., Liq. Cryst. 23, 749 (1997).Google Scholar
9 Amundson, K.R. and Srinivasarao, M., Phys. Rev. E 58, R1211 (1998).Google Scholar
10 Roussel, F., Maschke, U., Coqueret, X., Buisine, J.M., Comptes Rendus Acad. Sci. Ser. II-B 326, 449 (1998).Google Scholar
11 Lovinger, A.J., Amundson, K.R., Davis, D.D., Polymer 39, 4489 (1998).Google Scholar
12 Zyryanov, V.Y., Smorgon, S.L., Shabanov, V.F., Pozhidaev, E.P., Mol. Cryst. Liq. Cryst. Sci. Technol. C 9, 139 (1998).Google Scholar
13 Bates, F.S. and Fredrickson, G.H., Phys. Today 52, 32 (1999).Google Scholar
14 Adams, J. and Gronski, W., Makromol. Chem., Rapid Commun. 10, 553 (1989).Google Scholar
15 Fischer, H., Poser, S., Frank, W., Arnold, M., Macromols. 27, 7133 (1994).Google Scholar
16 Walther, M. and Finkelmann, H., Prog. Polym. Sci. 21, 951 (1996).Google Scholar
17 Chen, J.T., Thomas, E.L., Ober, C.K., Mao, G., Science 273, 343 (1996).Google Scholar
18 Mao, G.P., Wang, J.G., Ober, C.K., Brehmer, M., O'Rourke, M.J., Thomas, E.L., Chem. Mater. 10, 1538 (1998).Google Scholar
19 Watanabe, H., Sato, T., Osaki, K., Yao, M.-L., Yamagishi, A., Macromols. 30, 5877 (1997).Google Scholar
20 Laurer, J.H., Mulling, J.F., Khan, S.A., Spontak, R.J., Bukovnik, R., J. Polym. Sci. B: Polym. Phys. 36, 2379 (1998).Google Scholar
21 Hanley, K.J. and Lodge, T.P., J. Polym. Sci. B: Polym. Phys. 36, 3101 (1998).Google Scholar
22 Walther, M., Faulhammer, H., Finkelmann, H., Macromol. Chem. Phys. 199, 223 (1998).Google Scholar
23 Sänger, J., Gronski, W., Maas, S., Sttihn, B., Heck, B., Macromols. 30, 6783 (1997).Google Scholar
24 Callister, S., Keller, A., Hikmet, R.M., Makromol. Chem., Macromol. Symp. 39, 19 (1990).Google Scholar