Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:56:59.806Z Has data issue: false hasContentIssue false

The Effect of Cobalt on Martensitic Toughening Parameters in NiAl

Published online by Cambridge University Press:  26 February 2011

Scott M. Russell
Affiliation:
Pratt & Whitney, 400 Main St., East Hartford, CT 06108.
C. C. Law
Affiliation:
Pratt & Whitney, 400 Main St., East Hartford, CT 06108.
M. J. Blackburn
Affiliation:
Pratt & Whitney, 400 Main St., East Hartford, CT 06108.
Get access

Abstract

The martensitic transformation and the effect of cobalt additions on important martensitic toughening parameters are being studied as a means of toughening NiAl alloys. Cobalt additions to NiAl martensite are seen to lower the Ms temperature, reduce the transformation strain anisotropy, and reduce the transformation temperature hysteresis (an indicator of interfacial mobility). Optimization of these parameters should allow martensitic transformation toughening processes to aid in overcoming the ambient temperature brittleness of NiAl alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Law, C.C. and Blackburn, M.J., ”Rapidly Solidified Lightweight Durable Disk Material,” Air Force Report No. AFWAL–TR–87–4102, 1987.Google Scholar
2. Miracle, D.B., Russell, S.M and Law, C.C., ”Slip System Modification in NiAl,” these proceedings.Google Scholar
3. Grala, E.M., Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J.H. (J. Wiley & Sons Inc., New York, 1960).Google Scholar
4. Schulson, E.M., Presentation at NASA-COSAM Workshop, NASA-Lewis Research Center, Cleveland, Ohio, October 1982.Google Scholar
5. Enami, K., et al., Trans. Japan Inst. Metals 22, 357 (1981).Google Scholar
6. Litvinov, V.S. and , A.A. Arkhangel'skaya, Fiz. Met. Metall. 44 (4), 826 (1977).Google Scholar
7. Saburi, T. and Wayman, C.M., Acta Met. 27, 979 (1979).Google Scholar
8. Melton, K.N. and Mercier, O., Acta Met. 29, 393 (1981).CrossRefGoogle Scholar
9. Mohamed, H.A. and Washburn, J., J. Mat. Sci. 12, 469 (1977).Google Scholar
10. Miyakazi, S., et al., Scripta Met. 15, 287 (1981).Google Scholar
11. Melton, K.N. and Mercier, O., Met. Trans. A 9A, 1487 (1978).Google Scholar
12. Saburi, T. and Nenno, S., in Proc. Int. Conf. ‘Solid-Solid Phase Transformations', edited by Aaronson, H.I., et al. (Pittsburgh, PA, 1981), pp. 1455–1479.Google Scholar
13. Miyazaki, S., et al., in Proc. Int. Conf. on Martensitic Transformations (ICOMAT-82), edited by Delaey, L. and Chandrasekaran, M. (Leuven, Belgium, 1982), pp. 255–260.Google Scholar
14. Miyakazi, S., et al., Scripta Met. 16, 431 (1982).Google Scholar
15. Wu, M.H., private communication.Google Scholar
16. Kaufman, L. and Nesor, H., Met. Trans. A 6A, 2123 (1975).Google Scholar
17. Georgopoulos, P. and Cohen, J.B., Scripta Met. 11, 147 (1977).Google Scholar
18. Chakravorty, S. and Wayman, C.M., Met. Trans. A 7A, 555 (1976).Google Scholar