Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T13:59:36.796Z Has data issue: false hasContentIssue false

Effect of CdCl2 Treatment on the Interior of CdTe Crystals

Published online by Cambridge University Press:  21 March 2011

Kent J. Price*
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
Get access

Abstract

An essential processing step in CdTe/CdS polycrystalline solar cells is heat treatment in CdCl2. We present photoluminescence results from single crystals of CdTe that have been exposed to CdCl2 treatments at 387 C similar to those used in actual cell fabrication. Using sub band gap excitation from a tunable diode laser, we probe states in the interior of the crystal. We show that high-purity (99.998 percent) CdCl2 treatment results in the appearance of a 1.45 eV donor-acceptor transition that is likely due to a Cl-Cu center. Low purity (99.7 percent) CdCl2treatment results in the appearance of the 1.45 eV line and a 1.555 eV Cu-related emission. These results indicate that the CdCl2 treatment has an effect on the interior of CdTe grains, in addition to its already well established effect on grain boundaries in polycrystalline CdS/CdTe devices. They also imply that CdCl2 treatment may result in the incorporation of Cu into the CdTe grains. The results will be related to the effects of CdCl2 on polycrystalline CdS/CdTe devices that have been observed by other groups.

This work is supported by NREL

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Potter, M. D. G., Halliday, D. P., Cousins, M., Durose, K., Thin Solid Films, 361–362, 248 (2000).Google Scholar
2. Moutinho, H. R., Al-Jassim, M. M., Levi, D. H., Dippo, P. C., Kazmerski, L. L., J. Vac. Sci. Tech. A. 16, 1251 (1998).Google Scholar
3. Moutinho, H. R., Dhere, R. G., Al-Jassim, M. M., Levi, D. H., Kazmerski, L. L. J. Vac. Sci. Tech. A. 17, 1793 (1999).Google Scholar
4. Grecu, D. and Compaan, A. D., J. Appl. Phys. 87, 1722 (2000).Google Scholar
5. Okamoto, T., Matsuzaki, Y., Amin, N., Yamada, A., Konagai, M., Jpn. J. Appl. Phys. 37, 3894 (1998).Google Scholar
6. Edwards, P. R., Gallaway, S. A., Durose, K., Thin Solid Films, 361–362, 364 (2000).Google Scholar
7. Woods, L. M., Robinson, G. Y., Levi, D. H., to be published in the 28th IEEE PVSC, Anchorage, Alaska, (2000).Google Scholar
8. Gessert, T. A., Duda, A., Asher, S. E., Narayanswamy, C., Rose, D., to be published in the 28th IEEE PVSC, Anchorage, Alaska, (2000).Google Scholar
9. Grecu, D., Compaan, A. D., Young, D., Jayamaha, U., Rose, D. H., J. Appl. Phys. 88, 2490 (2000).Google Scholar
10. Wei, S. H., presentation at the National CdTe Team Meeting Minutes, Golden, CO, January 25-26, 2001.Google Scholar
11. Chamonal, J. P., Molva, E., Pautrat, J. L., Solid State Comm, 43, 801 (1982).Google Scholar
12. James, K. M., Merz, J. L., J. Vac. Sci. Tech. A, 6, 2664 (1988).Google Scholar
13. Laurenti, J. P., Bastide, G., Rouzeyre, M., Solid State Comm, 67, 1127 (1988).Google Scholar
14. Meyer, B. K., Stadler, W., Hofmann, D. M., Omling, P., Sinerius, D., Benz, K. W., J. Cryst. Growth 117, 656, (1992).Google Scholar
15. Seto, S., Tanaka, A., Masa, Y., Kawashima, M., J. Cryst. Growth 117, p. 271, (1992)Google Scholar