No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
We have systematically investigated the effect of C/B sequential implantation on the B-related acceptors and deep levels in 4H-SiC using thermal admittance spectroscopy. With increasing concentration of co-implanted C, the density of deep levels was found to start decreasing and to be completely suppressed for the C and B ratio of 1:1. Moreover, the density and ionization energy of B acceptors were seen to start increasing and lowering, respectively, with increasing C concentration. However, we found that excess C-content leads to the formation of a new complex defect. The C-V results also support the expected increase in the total hole concentration with increasing concentration of the co-implanted C-atoms, which is followed by a decrease in the concentration under C-rich condition. This is in reasonable agreements with the behavior of the B acceptors and deep defect levels. Therefore, the concentration of co-implanted C-atoms is considered to be very sensitive to the formation of the B acceptor levels.