Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T04:19:37.026Z Has data issue: false hasContentIssue false

Effect of Cationic or Anionic Dopants on Optical and Photocatalytic Properties of TiO2 Nanopowders made by Flame Spray Synthesis (FSS)

Published online by Cambridge University Press:  31 January 2011

Katarzyna Anna Michalow
Affiliation:
[email protected], AGH University of Science and Technology, Faculty of Material Science and Ceramics, Krakow, Poland
Andre Heel
Affiliation:
[email protected], EMPA Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Duebendorf, Switzerland
Thomas Graule
Affiliation:
[email protected], EMPA Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Duebendorf, Switzerland
Mieczyslaw Rekas
Affiliation:
[email protected], AGH University of Science and Technology, Faculty of Material Science and Ceramics, Krakow, Poland
Get access

Abstract

TiO2, TiO2-1at.% W and TiO2-1at.% Cr were produced from metal-organic precursors by flame spray synthesis (FSS). TiO2-0.5at.% N was obtained by ammonolysis of FSS made TiO2 nanopowder in a rotating tube furnace under NH3 atmosphere. According to the X-ray diffraction (XRD) analysis, anatase is the predominant phase in all samples. Diffusive reflectance and the resulting band gap energy (Eg) were determined by diffusive reflection spectroscopy (DRS). Additional impurity bands at 2.43 and 2.57 eV for N- and Cr-doped TiO2, respectively have been observed. The impurity band formed in the band gap resulted in increase of the light absorption in the visible range. The photocatalytic performance of the nanopowders under ultraviolet (UV, 290-410 nm) and visible light irradiation (Vis, 400-500 nm) was studied by the degradation of methylene blue (MB) in aqueous suspensions. It was found that all types of dopants influence the structure, interaction with the visible light as well as photocatalytic activity. Among all nanopowders, TiO2-W exhibited the best photoactivity, much higher than the commercial TiO2-P25 nanopowder. The optimum of the photodecolourization was obtained for 0.7 and 1 at.% W.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Radecka, M. Rekas, M. and Zakrzewska, K. Trends Inorg. Chem. 9, 81 (2006).Google Scholar
2 Fujishima, A. and Zhang, X. C. R. Chim. 9, 750 (2006).Google Scholar
3 Akurati, K. Vital, A. Dellemann, J.-P., Michalow, K. Graule, T. Ferri, D. and Baiker, A. Appl. Catal., B 79, 53 (2008).Google Scholar
4 Michalow, K.A. Vital, A. Heel, A. Graule, T. Reifler, F.A. Ritter, A. Zakrzewska, K. and Rekas, M., J. Adv. Oxid. Technol. 11, 56 (2008).Google Scholar
5 Li, X.Z. Li, F.B. Yang, C.L. and Ge, W.K. J. Photochem. Photobiol., A 141, 209 (2001).Google Scholar
6 Borgarello, E. Kiwi, J. Graetzel, M. Pelizzetti, E. and Visca, M. J. Am. Chem. Soc. 104, 2996 (1982).Google Scholar
7 Radecka, M. Zakrzewska, K. Wierzbicka, M. Gorzkowska, A. and Komornicki, S. Solid State Ionics, 157, 379 (2003).Google Scholar
8 Asahi, R. Morikawa, T. Ohwaki, T. Aoki, K. and Taga, Y. Science, 293, 269 (2001).Google Scholar
9 Chen, X. and Mao, S.S. Chem. Rev. 107, 2891 (2007).Google Scholar
10 Almquist, C.B. and Biswas, P. J. Catal. 212, 145 (2002).Google Scholar
11 Sclafani, A. and Herrmann, J.M. J. Phys. Chem. 100, 13655 (1996).Google Scholar
12 Logvinovich, D. Borger, A. Dobeli, M. Ebbinghaus, S.G. Reller, A. and Weidenkaff, A. Prog. Solid Chem. 35, 281 (2007).Google Scholar
13 Michalow, K.A. Logvinovich, D. Weidenkaff, A. Amberg, M. Fortunato, G. Heel, A. Graule, T. and Rekas, M. Catal. Today doi:10.1016/j.cattod.2008.12.015 (2009).Google Scholar
14 Mills, A. Morris, S. and Davies, R. J. Photochem. Photobiol., A 70, 183 (1993).Google Scholar
15 Akurati, K.K. Vital, A. Klotz, U.E. Bommer, B. Graule, T. and Winterer, M. Powder Technol. 165, 73 (2006).Google Scholar
16 Komornicki, S. Radecka, M. and Sobas, P. Mater. Res. Bull. 39, 2007 (2004).Google Scholar
17 Trenczek-Zajac, A., Radecka, M. Jasinski, M. Michalow, K.A. Rekas, M. Kusior, E. Zakrzewska, K., Heel, A. Graule, T. and Kowalski, K. J. Power Sources, doi:10.1016/j.jpowsour.2009.02.068Google Scholar
18 Radecka, M. Rekas, M. Kusior, E. Zakrzewska, K. Heel, A. Michalow, K.A. and Graule, T. J. Nanosci. Nanotechnol. accepted for printing (2009).Google Scholar
19 Yan, X. Ohno, T. Nishijima, K. Abe, R. and Ohtani, B. Chemical Physics Letters, 429 (2006) 606.Google Scholar
20 Lachheb, H. Puzenat, E. Houas, A. Ksibi, M. Elaloui, E. Guillard, C. and Herrmann, J.-M., Appl. Catal., B 39, 75 (2002).Google Scholar
21 Mills, A. and Wang, J. J. Photochem. Photobiol., A 127, 123 (1999).Google Scholar
22 Fox, M.A. and Dulay, M.T. Chem. Rev. 93, 341 (1993).Google Scholar