No CrossRef data available.
Article contents
Effect of Calcium Silicate Hydrate Precipitates at Cementitious and Bentonite Material Interface on Long-Term Engineered Barrier System Performance in TRU Waste Disposal Facilities
Published online by Cambridge University Press: 15 February 2011
Abstract
Chemical conditions and mass transport properties of engineered barrier systems in TRU waste facilities would change with time due to the interaction of cement/bentonite materials. (‘TRU waste’ is one of categories of the radioactive wastes and contains a significant amount of alpha-emitting transuranic nuclides. In some countries, these wastes are classified into the Intermediate Level Waste (ILW).) Previous numerical model analyses to assess the long-term performance of engineered barrier systems in TRU waste repositories predicted to form Calcium Silicate Hydrate (C-S-H) species at the interface between the cementitious and bentonite materials. If C-S-H precipitates in the bentonite side of the boundary, mass transport in the bentonite buffer decreases and mineralogical alterations are expected to be restricted for a long period. The evidence of C-S-H precipitation in the bentonite side, however, still has not been identified in the former experimental studies. To improve the reliability of numerical analyses, immersion experiments were performed using contact samples of cementitious and bentonite materials, and X-ray absorption fine structure (XAFS) analysis was carried out to detect C-S-H precipitation at the contacting interface. Precipitation of C-S-H was confirmed from the obtained XAFS spectra. This result is one of the evidences to show the validity of the current numerical model analyses, which suggests that the bentonite buffer performance as an engineered barrier would be kept over a long period.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2009