Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T05:08:47.005Z Has data issue: false hasContentIssue false

The Effect of Boron on the Microstructure of Ni2 AITi.

Published online by Cambridge University Press:  26 February 2011

S. R. Schuon
Affiliation:
Metallurgy Dept. General Motors Research Laboratories, Warren, MI 48090-9055
V. Rehzets
Affiliation:
Metallurgy Dept. General Motors Research Laboratories, Warren, MI 48090-9055
Get access

Abstract

Ingots with a nominal composition of Ni–34a/o Al–15a/o Ti + O.Ow/o B, 0.05w/o B, 0.1w/o B or 0.3w/o B were prepared and compression tested at a strain rate of 1.7 x 10–7/s at room temperature, 650°C, 870°C, and 1000°C in air. Alloys were single-phase Ni2 AITi and borides were contained in all compositions containing boron. The compressive yield strength and the ultimate compressive strength of NA2AITi containing boron is strongly affected by the type and distribution of borides. The formation of TiB2 at 0.3w/o B increased the strength at room teperature, 650°C, 870°C, ang 1000°C, while formation of a TiB-Ni2 AITi eutectic at 0.05w/o and 0.lw/o B decreased strength at all temperatures. Crack deflection by TiB2 is an important strengthening mechanism at room temperature and 650°C. However, at 1000°C, dispersion strengthening may be an important strengthening factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strutt, P. R. and Kear, B. H., High-Temperature Ordered Intermetallic Alloys, Koch, C. C., Liu, C. T., and Stoloff, N. S., eds., Materials Research Society, Pittsburgh, PA (1984), p. 279.Google Scholar
2. Liu, C. T., High-Temperature Ordered Intermetallic Alloys, Koch, C. C., Liu, C. T. and Stoloff, N. S., eds., Materials Research Society, Pittsburgh, PA (1984), p. 351.Google ScholarPubMed
3. Liu, C. T. and White, C. L., Scripta Met., Vol.20, 1986, p. 1613.Google Scholar
4. Slaughter, E. R. and Das, S. K., Proc. of Second International Conference on Rapid Solidification Processing, Claitor's Publ. Div., Baton Rouge, LA (1980), p. 354.Google Scholar
5. Schuon, S. R., ”A Microstructural Evaluation of Boron-Modified Ni2AITi,” GM Research Memorandum 23–3526, March 20, 1986.Google Scholar
6. Murray, J. L., Liao, P. K. and Spear, K. E., Binary Alloy Phase Diagrams, Massalski, T. B., ed., American Society for Metas, Metals Park, OH(1986), p. 387.Google Scholar
7. Umakoshi, Y., Yamaguchi, M., and Yamane, T., Phil. Mag. A., Vol.52, 1985, p. 357.Google Scholar
8. Vedula, K., Pathare, V., Aslandis, I. and Titran, R., High-Temperature Ordered Intermetallic Alloys, Koch, C. C., Liu, C. T. and Stoloff, N. S., eds., Materials Research Society, Pittsburgh, PA (1984), p. 411.Google Scholar
9. Westbrook, J. H., J. Electrochemical Soc., vol. 103 (1956), p. 54.CrossRefGoogle Scholar
10. Faber, K. T. and Evans, A. G., Acta Metall., Vol.31, 1983, p. 565.CrossRefGoogle Scholar
11. Faber, K. T. and Evans, A. G., Acta Metall., Vol.31, 1983, p. 577.CrossRefGoogle Scholar