Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T01:20:07.386Z Has data issue: false hasContentIssue false

The Effect of Bi-excess Surface Layers on BiFeO3 Thin Films Prepared by Chemical Solution Deposition

Published online by Cambridge University Press:  01 February 2011

Yoshitaka Nakamura
Affiliation:
[email protected], Osaka University, Systems Innovation, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan, +81-6-6850-6331, +81-6-6850-6341
Seiji Nakashima
Affiliation:
[email protected], Osaka University, Systems Innovation, Graduate Schools of Engineering Science, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan
Dan Ricinschi
Affiliation:
[email protected], Osaka University, Systems Innovation, Graduate Schools of Engineering Science, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan
Masanori Okuyama
Affiliation:
[email protected], Osaka University, Systems Innovation, Graduate Schools of Engineering Science, 1-3 Machikaneyama-Cho, Toyonaka, Osaka, 560-8531, Japan
Get access

Abstract

We have investigated the effect of Bi-excess surface layers of stoichiometric BiFeO3 thin films prepared by chemical solution deposition. A stoichiometric BiFeO3 thin film with both the Bi-excess top and bottom surface layers shows improved crystallinity with the remanent polarization of 65 μC/cm2 at 80 K, which is larger than BiFeO3 film prepared by the same process using stoichiometric solution. These results are attributed to the reduction of the imperfect crystal at the interface between BiFeO3 film and electrode. Stoichiometric BiFeO3 thin film with Bi-excess top and bottom surface layers also reserves the magnetic property of stoichiometric film. Stoichiometric BiFeO3 thin films with Bi-excess surface layers are an effective way to obtain good multiferroic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smolenskii, G. A. and Chupis, I., Sov. Phys. Usp. 26, 475 (1982).Google Scholar
2. Teague, J. R., Gerson, R., and James, W. J., Solid State Commun. 8, 1073 (1970).Google Scholar
3. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R., Science 299, 1719 (2003).Google Scholar
4. Yun, K. Y., Ricinschi, D., Kanashima, T., and Okuyama, M., Appl. Phys. Lett. 89, 192902 (2006).Google Scholar
5. Singh, S. K., Ishiwara, H., Maruyama, K., Appl. Phys. Lett. 100, 064102 (2006).Google Scholar
6. Nakamura, Y., Yun, K.Y., Nakashima, S., and Okuyama, M., Ferroelectrics, (accepted).Google Scholar
7. Naganuma, H., Okamura, S., Abstracts of the Japan Society of Applied Physics, The 54th Spring Meeting, Japan, 2007, p.606.Google Scholar
8. Cho, Y. W., Choi, S. K., and Rao, G. Venkata, Appl. Phys. Lett. 86, 202905 (2005).Google Scholar
9. Abe, K., Komatsu, S., Jpn. J. Appl. Phys. 32, 4186 (1993).Google Scholar
10. Bai, F., Wang, J., Wuttig, M., Li, J., Wang, N., Pyatalov, A. P., Zvezdin, A. K., Cross, L. E., and Viehland, D., Appl. Phys. Lett. 86, 023511 (2005).Google Scholar
11. Zalesskii, A. V., Zvezdin, A. K., Frolov, A. A., and Bush, A. A., JETP Lett. 71, 465 (2000).Google Scholar