Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T07:30:48.819Z Has data issue: false hasContentIssue false

Effect of Ammonium Acetate on the Properties of Chemical Bath Deposited CdS Films

Published online by Cambridge University Press:  29 January 2014

Abeer A. Al-Yafeai
Affiliation:
National Energy and Water Research Center, Abu Dhabi Water and Electricity Authority, P.O. Box 54111, Abu Dhabi, United Arab Emirates.
Sovannary Phok
Affiliation:
National Energy and Water Research Center, Abu Dhabi Water and Electricity Authority, P.O. Box 54111, Abu Dhabi, United Arab Emirates.
Sahar A. Al-Shaibani
Affiliation:
National Energy and Water Research Center, Abu Dhabi Water and Electricity Authority, P.O. Box 54111, Abu Dhabi, United Arab Emirates.
Shifaa M. Al-Baity
Affiliation:
National Energy and Water Research Center, Abu Dhabi Water and Electricity Authority, P.O. Box 54111, Abu Dhabi, United Arab Emirates.
Esmaeel M. Al-Hammadi
Affiliation:
National Energy and Water Research Center, Abu Dhabi Water and Electricity Authority, P.O. Box 54111, Abu Dhabi, United Arab Emirates.
Falah S. Hasoon
Affiliation:
National Energy and Water Research Center, Abu Dhabi Water and Electricity Authority, P.O. Box 54111, Abu Dhabi, United Arab Emirates.
Get access

Abstract

This investigation is a comprehensive study of the effect of ammonium acetate on the electrical, optical, morphology and microstructure of CdS thin films grown by Chemical Bath Deposition method (CBD). Two sets of CdS thin films (A and B) were deposited on glass substrates at 60°C for 60 min. The films were deposited using chemical bath solution that consists of cadmium acetate, ammonium hydroxide, and thiourea. However, ammonium acetate was added into the chemical bath used to deposit set (B), where ammonium acetate was eliminated from bath solution used to deposit set (A). The films’ morphology was examined by Field Emission Scanning Electron Microscopy (FE-SEM), whereas, the chemical composition was investigated by Electron Probe Micro-Analyzer (EPMA). The X-Ray Diffraction (XRD) θ/2θ technique was applied to study the structure of the films. Atomic Force Microscopy (AFM) was used to measure the average surface roughness of the films, and Dektak Profilometer was used to determine the CdS films thickness. The optical and electrical properties for the films were determined using UV-Vis-NIR Spectrometer, and the Hall Effect technique, respectively. The highest carrier mobility was obtained for the films deposited in an ammonium acetate free bath. However, both films were polycrystalline with hexagonal structure exhibiting a tendency toward <002> texture, that increase with increasing the pH value of the chemical bath.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, Q.Q., Shi, J.H., Li, Z.Q., Zhang, D.W., Li, X.D., Sun, Z, Zhang, L.Y., Huang, S.M., J. Phys. B 405 (2010) 43604365 .10.1016/j.physb.2010.07.043CrossRefGoogle Scholar
Liu, F., Lai, Y., Liu, J., Wang, B., kuang, S., Zhang, Z., Li, J., Liu, Y., J. Alloys and Comp. 493 (2010) 305308.10.1016/j.jallcom.2009.12.088CrossRefGoogle Scholar
Zhou, L., Hu, X., Wu, S., J. Surf. Coat. Technol. 228 (2013) S171S174.10.1016/j.surfcoat.2012.06.047CrossRefGoogle Scholar
Jaber, A.Y., Alamri, S.N., Aida, M.S., J. Thin Solids Films 520 (2012) 34853489.10.1016/j.tsf.2011.12.061CrossRefGoogle Scholar
Tomakin, M., Altunbas, M., Bacaksiz, E., Celik, S., J. Thin Solids Films 520 (2012) 25322536.10.1016/j.tsf.2011.10.160CrossRefGoogle Scholar
Paudel, N.R., Wieland, K.A., Compaan, A.D., J. Solar Ener. Mater. & Solar Cells 105 (2012) 109112.10.1016/j.solmat.2012.05.035CrossRefGoogle Scholar
Nishino, J., Chatani, S., Uotani, Y., Nosaka, Y., J. Electroana. Chem. 473 (1999) 217222.10.1016/S0022-0728(99)00250-8CrossRefGoogle Scholar
Brunthaler, G., Lang, M., Forstner, A., Giftge, C., Schikora, D., Ferreira, S., Sitter, H., Lischka, K., J.Cryst. Growth 138 (1994) 559.10.1016/0022-0248(94)90868-0CrossRefGoogle Scholar
Vaudo, R.P., Eason, D.B., Bowers, K.A., Gosset, K.J., Cook, J.W., Schetsina, J.W., J.Vac.Sci.Technol. B11 (1993) 875.10.1116/1.586770CrossRefGoogle Scholar
Matsumoto, H., Nakayama, A., Ikegami, S., Hiori, Y., Jpn.J. Appl.Physi. 15 (1980) 129.10.1143/JJAP.19.129CrossRefGoogle Scholar
Chou, H.C., Rohatgi, A., Thomas, E.W., Kamra, S., Bhat, A.K., J.Electochem. Soc. 142 (1992) 254.10.1149/1.2043891CrossRefGoogle Scholar
Chou, H.C., Rohatgi, A., J. Electron. Mater. 23 (1994) 31.10.1007/BF02651264CrossRefGoogle Scholar
Kwork, H.S., Zheng, J.P., Witanachchi, S., Mattocks, P., Shi, L., Ying, Q.Y., Wang, X.W., Shaw, D.T., Appl. Phys. Lett. 52 (1988) 1095.Google Scholar
Chu, T.L., Britt, J., Ferekides, C., Wang, C., Wu, C.Q., IEEE Trans. Electron. Device Lett. 13 (1992) 303.10.1109/55.145061CrossRefGoogle Scholar
Bonilla, S., Dalchiele, E.A., Thin Solid Films 204 (1991) 397.10.1016/0040-6090(91)90078-CCrossRefGoogle Scholar
Green, M. A., Keith, E., Hishikawa, Y., Warta, W., Dunlop, E. D., Solar cell efficiency tables (version 42), Prog. Photovolt: Res. Appl. 21(2013) 827837.10.1002/pip.2404CrossRefGoogle Scholar
Barote, M.A., Yadav, A.A., Masumdar, E.U., J. Phys. B 406 (2011) 18651871.10.1016/j.physb.2011.02.044CrossRefGoogle Scholar
Prabahar, S., Dhanam, M., J. Crys. Growth 285 (2005) 4148.10.1016/j.jcrysgro.2005.08.008CrossRefGoogle Scholar
Enriquez, J. P., Mathew, X., J. Solar Ener. Mater. & Solar Cells 76 (2003) 313322.10.1016/S0927-0248(02)00283-0CrossRefGoogle Scholar
Zhou, L., Hu, X., Wu, S., Advan. Mat. Res. 557-559 (2012) 19411944.Google Scholar
Kariper, A., Güneri, E, Döde, F., Gümüs, C., Chalcogenide Letters, 9 (2012) 2740.Google Scholar
Kariper, A., Güneri, E., Gödeb, F., Gümüs, C.¸ Özpozand, T., J. Mat. Chem. and Phys. 129 (2011) 183188.10.1016/j.matchemphys.2011.03.070CrossRefGoogle Scholar
Li, X., Yin, Y., Dong, X., IEEE International Conference on Solid Dielectrics, 1 & 2 (2007) 2702763.Google Scholar
Ortega-Borges, R., Lincot, D., J.Electrochem. Soc. 140 (1993) 3464.10.1149/1.2221111CrossRefGoogle Scholar
Lanning, B.R., Armstrong, J.H.. Int. J. Sol. Energy 12 (1992) 247.10.1080/01425919208909766CrossRefGoogle Scholar
Munikrishna, R.Y., Nagendra, V.P.M, IOSR J. Appl. Phys. 4 (2013) pp. 17.Google Scholar
Oladeji, I.O., Chow, L., Liu, J.R., Chu, W.K., Bustamante, A.N.P., Fredricksen, C., Schulte, A.F., Thin Solid Films 359 (2000) 154159.10.1016/S0040-6090(99)00747-6CrossRefGoogle Scholar
Ortega-Borges, R. and Lincot, D., J. Electrochem. Soc. Vol. 140 (1993) 3464.10.1149/1.2221111CrossRefGoogle Scholar
Loncot, D. and Ortega-Borges, R., ibid., 139 (1992) 1880.Google Scholar