Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T06:05:02.394Z Has data issue: false hasContentIssue false

Effect of Aluminum Nitrate Concentration in Zinc Acetate Precursor on ZnO:Al Thin Films Prepared by Spray Pyrolysis

Published online by Cambridge University Press:  31 January 2011

Samerkhae Jongthammanurak
Affiliation:
[email protected], 1National Metal and Materials Technology Center, Pathumthani, Thailand
Sirirak Phakkeeree
Affiliation:
[email protected], Kasetsart University, Bangkok, Thailand
Yot Boontongkong
Affiliation:
[email protected], 1National Metal and Materials Technology Center, Pathumthani, Thailand
Chanchana Thanachayanont
Affiliation:
[email protected], 1National Metal and Materials Technology Center, Pathumthani, Thailand
Get access

Abstract

Aluminium-doped zinc oxide (ZnO) films have been prepared by spray pyrolysis technique using the mixed solution of zinc acetate dihydrate and aluminium nitrate nonahydrate in methanol. Concentration of aluminum in the solution was varied in a range of 1, 3 and 5 atomic percents. The results from X-ray diffraction showed that the preferred orientation of ZnO films changed to the [002] direction when the concentration of aluminum in the solution exceeded 1 atomic percents. ZnO films deposited from the 3 atomic percent Al containing solution had the largest grains and showed the lowest resistivity of 75 Ω-cm. Addition of aluminum into the precursor solution shifted the absorption edge towards longer wavelengths.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Minami, T., Semicond. Sci. Technol. 20, S3543 (2005).10.1088/0268-1242/20/4/004Google Scholar
2 Hartnagel, H.L., Dawar, A.L., Jain, A.K. and Jagadish, C., Semiconducting transparent thin films (Taylor&Francis, 1985).Google Scholar
3 Zhang, F.L., Johansson, M., Andersson, M.R., Hummelen, J.C. and Inganäs, O., Synthetic Metals 137, 14011402 (2003).10.1016/S0379-6779(02)01059-7Google Scholar
4 Oertel, D.C., Bawendi, M.G., Arango, A.C. and Bulović, V., Appl. Phys. Letts. 87, 213505 (2005).10.1063/1.2136227Google Scholar
5 Reddy, K.T. Ramakrishna, Gopalaswamy, H., Reddy, P.J. and Miles, R.W., J. Crys. Gro. 210, 516520 (2000).10.1016/S0022-0248(99)00868-4Google Scholar
6 Tokumoto, M.S., Smith, A., Santilli, C.V., Pulcinelli, S.H., Craievich, A.F., Elkaim, E., Traverse, A. and Briois, V., Thin Solid Films 416, 284293 (2002).10.1016/S0040-6090(02)00531-XGoogle Scholar
7 Rozati, S.M., Moradi, S., Golshahi, S., Martins, R. and Fortunato, E., Thin Solid Films 518, 12791282 (2009).10.1016/j.tsf.2009.03.231Google Scholar
8 Murdoch, G.B., Hinds, S., Sargent, E.H., Tsang, S.W., Mordoukhovski, L. and Lu, Z.H., Appl. Phys. Letts. 94, 213301 (2009).10.1063/1.3142423Google Scholar
9 Xu, D., Deng, Z., Xu, Y., Xiao, J., Liang, C., Pei, Z. and Sun, C., Phys. Letts. A. 346, 148 (2005).10.1016/j.physleta.2005.07.080Google Scholar
10 Chen, M., Pei, Z.L., Sun, C., Gong, J., Huang, R.F. and Wen, L.S., Mater. Sci. Eng. B85, 212217 (2001).10.1016/S0921-5107(01)00584-0Google Scholar
11 Yoo, J., Lee, J., Kim, S., Yoon, K., Park, I. Jun, Dhungel, S.K., Karunagaran, B., Mangalaraj, D. and Yi, J., Thin Solid Films 480-481, 213217 (2006).Google Scholar
12 Chung, Y.M., Moon, C.S., Jung, W.S. and Han, J. G., Thin Solid Films 515, 567570 (2006).10.1016/j.tsf.2005.12.170Google Scholar
13 Agura, H., Suzuki, A., Matsushita, T., Aoki, T. and Okuda, M., Thin Solid Films 445, 263267 (2003).10.1016/S0040-6090(03)01158-1Google Scholar
14 Mridha, S. and Basak, D., J. Phys. D: Appl. Phys. 40, 69026907 (2007).10.1088/0022-3727/40/22/008Google Scholar
15 Joseph, B., Manoj, P.K. and Vaidyan, V.K., Ceram. Inter. 32, 487493 (2006).10.1016/j.ceramint.2005.03.029Google Scholar
16 Mohammad, M.T., Hashim, A.A. and Al-Maamory, M.H., Mater. Chem. Phys. 99, 382387 (2006).10.1016/j.matchemphys.2005.11.009Google Scholar
17 Rozati, S.M. and Akesteh, Sh., Mater. Char. 58, 319322 (2007).10.1016/j.matchar.2006.05.012Google Scholar
18 Lee, J.-H. and Park, B.-O., Mater. Sci. and Eng. B 106, 242 (2004).10.1016/j.mseb.2003.09.040Google Scholar
19 Kaid, M.A. and Ashour, A., Appl. Surf. Sci. 253, 30293033 (2007).10.1016/j.apsusc.2006.06.045Google Scholar
20 Seebar, W.T., Abou-Helal, M.O., Barth, S., Beli, D., Höche, T., Afify, H.H. and Demian, S.E., Mater. Sci. in Sem. Proc. 2, 4555 (1999).10.1016/S1369-8001(99)00007-4Google Scholar
21 Bacaksiz, E., Parlak, M., Tomakin, M., Özçelik, A., Karakiz, M. and Altunba, M., J. Alloys and Comps. 466, 447 (2008).10.1016/j.jallcom.2007.11.061Google Scholar