Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:24:44.863Z Has data issue: false hasContentIssue false

The Effect of Aging on Tungsten Filament Surface Kinetics in Hot-Wire Chemical Vapor Deposition of Silicon

Published online by Cambridge University Press:  01 February 2011

Jason K. Holt
Affiliation:
Laboratories of Applied PhysicsCalifornia Institute of Technology Pasadena, CA 91125
Maribeth Swiatek
Affiliation:
Laboratories of Applied PhysicsCalifornia Institute of Technology Pasadena, CA 91125
David G. Goodwin
Affiliation:
Laboratories of Applied PhysicsCalifornia Institute of Technology Pasadena, CA 91125
Harry A. Atwater
Affiliation:
Laboratories of Applied PhysicsCalifornia Institute of Technology Pasadena, CA 91125
Thomas J. Watson
Affiliation:
Laboratories of Applied PhysicsCalifornia Institute of Technology Pasadena, CA 91125
Get access

Abstract

Wire-desorbed radicals present during hot-wire chemical vapor deposition growth have been measured by quadrupole mass spectrometry. For wire temperatures in excess of 1500 K, Si is the predominant radical desorbed from a new wire, with a minor contribution from SiH3. Aged wires showed profoundly different radical desorption kinetics, consistent with evaporation of Si from liquid silicon. It is proposed that this aging is related to silicide formation at the surface of the wire.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nozaki, Y., Kongo, K., Miyazaki, T., Kitazoe, M., Horii, K., Umemoto, H., Masuda, A., and Matsumura, H., J. Appl. Phys. 88, 5437 (2000).10.1063/1.1314330Google Scholar
[2] Tange, S., Inoue, K., Tonokura, K., and Koshi, M.., Thin Solid Films, 395 (1-2), 4246 (2001).10.1016/S0040-6090(01)01204-4Google Scholar
[3] Duan, H., Zaharias, G., and Bent, S., Appl. Phys. Lett. 78, 1784 (2001).10.1063/1.1355994Google Scholar
[4] Holt, J., Swiatek, M., Goodwin, D., and Atwater, H., Mat. Res. Soc. Symp. Proc., San Francisco, 2001, Vol. 664.Google Scholar
[5] Doyle, J., Robertson, R., Lin, G., He, M., and Gallagher, A., J. Appl. Phys. 64, 3215 (1988).10.1063/1.341539Google Scholar
[6] Mahan, A., Mason, A., Nelson, B., and Gallagher, A., Mat. Res. Soc. Symp. Proc., San Francisco, 2000, Vol. 609.Google Scholar
[7] Matsumura, H., Masuda, A., and Izumi, A., Mat. Res. Soc. Symp. Proc., San Francisco, 1999, Vol. 557.Google Scholar
[8] Purnell, J. H. and Walsh, R., Chem. Phys. Lett. 110 (1984).10.1016/0009-2614(84)85239-2Google Scholar
[9] Thermochemical and Physical Properties (TAPP), v.2.1, ES Microware (1991).Google Scholar
[10] Kharatyan, S. and Chatilyan, H., Prikladnoy, J. Khimii Armenii (1-2), 2230 (1999).Google Scholar
[11] Ehrlich, G., Adv. Catal. Rel. Subj. 14, 271273 (1963).Google Scholar
[12] Margrave, J., The Characterization of High-Temperature Vapors, John Wiley and Sons, Inc. (New York) 1967.Google Scholar
[13] Yang, H., Asplund, M., Kotz, K., Wilkens, M., Frei, H., and Harris, C., J. Amer. Chem. Soc. 120, 10154 (1998).Google Scholar