Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:42:33.508Z Has data issue: false hasContentIssue false

Ebic/Tem Investigation of Defects in Solar Cell Silicon

Published online by Cambridge University Press:  15 February 2011

Dieter G. Ast
Affiliation:
Materials Science and Eng., Bard Hall, Cornell University, Ithaca NY, 14853, USA
Brian Cunningham
Affiliation:
Materials Science and Eng., Bard Hall, Cornell University, Ithaca NY, 14853, USA
Horst Strunk
Affiliation:
Materials Science and Eng., Bard Hall, Cornell University, Ithaca NY, 14853, USA
Get access

Abstract

Two examples are given of the application of EBIC and HVTEM to the study of defects in silicon.

An hexagonal dislocation network in a coherent first order twin boundary in WEB silicon shows a three fold symmetry when imaged by EBIC. The observed variation of the minority carrier lifetime at the nodes is consistent with a model which assumes that jogs are particularly strong recombination sites at a dislocation.

EBIC and STEM observations on unprocessed and processed EFG ribbon show that the phosphorus diffused junction depth is not uniform, and that a variety of chemical impurities precipitate out during processing. Two kinds of precipitates are found i) 10 nm or less in size, located at the dislocation nodes in sub-boundary like dislocation arrangements formed during processing and ii) large precipitates, the chemical composition of which has been partially identified. These large precipitates emit dense dislocations tangles into the adjacent crystal volume.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heydenreich, J., Blumtritt, H., Gleichmann, R. and Johansen, H., J. de Physique, Supplement C–6 (1979) p. 23 Google Scholar
2. Strunk, H. and Ast, D. G., 38th Ann.Proc.Electron.Microscopy.Soc.Amer., Bailey, E. W. (ed), San Francisco, CA (1980) p. 322 Google Scholar
3. Donolato, C., Appl.Phys.Let. 34 (1979) p.80; Optik 52 (1979/80) p.19; Solid State Elctronics 22 (1979) 797Google Scholar
4. Leamy, H. J., Kimerling, L. C. and Ferris, S. D., Scanning Electron Microscopy, Vol.1 (SEM Inc.,AMP O'Hare, II 6066, USA, 1978) p. 717 Google Scholar
5. Kimmerling, L. C., Leamy, H. J. and Patel, J. R., Appl.Phys.Lett, 30 (1977) p.217 CrossRefGoogle Scholar
6. Hanoka, J. F. and Bell, R. O., Ann.Rev.Material.Sci. (1981) p. 353 Google Scholar
7. Ioannou, D. E., J.Phys.D 13 (1980) p. 611 Google Scholar
8. Fujuki, T. and Matsunami, H., Jap.J.Appl.Phys. 20 (1981) p.745;Google Scholar
J.Appl. Phys. 52 (1981) p. 3428 Google Scholar
9. Foell, H. and Ast, D. G., TEM and EBIC Observations on EFG, JPL/DOE Report No. 954852–1 (1978)Google Scholar
10. Strunk, H., Cunningham, B. and Ast, D. G., Defect Structure of EFG Silicon, JPL/DOE Report No. 954852–6 (1980)Google Scholar
11. Booker, G. R., Ourmazd, A. and Darby, D. B., J. de Physique, Supplement No C–6, (1979) p.19 Google Scholar
12. Foell, H. and Ast, D. G., Phil.Mag. A, 40 (1979)589 CrossRefGoogle Scholar
13. Cunningham, B., Strunk, H. and Ast, D. G., Defect Structure of WEB Silicon, JPL/DOE Report No 954852–5 (1980);Google Scholar
To be published by Elctrochem, J.. Soc. Am.Google Scholar
14. Hirth, J.P. and Lothe, J., Theory of Dislocations, (McGraw Hill, New York 1968)Google Scholar
15. Carter, C. B. and Foell, H., Report No 4280, Material Science Center, Cornell University, July 1980;Google Scholar
Dislocation Modelling of Physical Systems, Eds. Ashby, M. F., Bullough, R., Hartley, C. S. and Hirth, J. P., (Pergamon, Oxford, 1980) p.554 Google Scholar
17. Hirsch, P. B., J. de Physique, Supplement C–6, (1979) p.27 Google Scholar
18. Cunningham, B., Strunk, H. and Ast, D. G., submitted to Appl.Phys.Lett.Google Scholar
19. Rhoderick, E.H., Metal Semiconductor Contacts, (Oxford University Press 1980)Google Scholar
20. Johnson, N. M., Biegelsen, D. K., Moyer, M. D., Appl.Phys.Lett. 38(1981) p.900 CrossRefGoogle Scholar
21. Goesele, U. and Strunk, H., Appl.Phys. 20(1979)p.265;Google Scholar
Strunk, H., Goesele, U. and Kolbesen, B. O., J. Microscopy 118(1980)p.35 CrossRefGoogle Scholar
22. Queisser, H. J., Shockely Transistor Corp. Final Report, Contract AF30(602) 2556,1963.Google Scholar
23. Hopkins, R. H., Davis, J. R., Rohatgi, A., Campbell, R. B., Blais, P. D., Rai-Choudhury, P., Stapelton, R. E., Mollenkopf, H. C. and Cormick, J. R. Mc., Effects of Impurities and Processing on Silicon Solar Cells, DOE/JPL Report No. 954331–9, Vol.2 (1980).Google Scholar