No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
We have investigated the spreading behavior of solvent droplets on a bulk water support using solvents with different vapor pressures and spreading coefficients. Instead of seeding the surface with tracer particles, as is usually done to track moving fronts, we employ laser shadowgraphy to visualize the entire surface of the spreading film including the leading edge. For non-volatile systems it has previously been shown that the leading edge advances in time as t3/4. We find that volatile systems with positive initial spreading coefficients exhibit two spreading fronts, both of which demonstrate power law growth but with exponents closer to 1/2. Surprisingly, differences in the liquid vapor pressure or the spreading coefficient seem only to effect the speed of advance but not the value of the exponent. We are presently investigating the behavior of the subsurface flow to determine the mechanism leading to the smaller spreading exponent.