Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T07:35:25.126Z Has data issue: false hasContentIssue false

Dynamics of Atomic Ordering in Bulk and Thin Film Intermetallic Alloys: A Complementary Approach to Atomic Migration

Published online by Cambridge University Press:  01 February 2011

Wolfgang Pfeiler
Affiliation:
[email protected], University of Vienna, Faculty of Physics, Dynamics of Condensed Systems, Vienna, Austria
Wolfgang Püschl
Affiliation:
[email protected], University of Vienna, Faculty of Physics, Dynamics of Condensed Systems, Vienna, Austria
Chaisak Issro
Affiliation:
[email protected], Burapha University, Faculty of Science, Department of Physics, Chonburi, Thailand
Rafal Kozubski
Affiliation:
[email protected], Jagellonian University, M. Smoluchovski Institute of Physics, Interdisciplinary Centre for Materials Modelling, Cracow, Poland
Veronique Pierron-Bohnes
Affiliation:
[email protected], CNRS-ULP, IPCMS-GEMME, Strasbourg, France
Get access

Abstract

One of the foremost challenges in today's materials science is the design and development of materials with physical properties customized for technical application. Due to their excellent corrosion resistance and their advantageous mechanical and in many cases also magnetic properties, intermetallic alloys are among the most important materials of the 21st century. Most of their outstanding qualities are linked to long-range order, the fact that unlike atoms are preferred as neighbours, which then segregate to different sublattices. In most intermetallics atomic order persists up to rather high temperatures, if not up to melting. However, connected with the entropy gain, the degree of order depends on temperature and thereby the stability of the designed beneficial materials properties is affected. By monitoring changes in the degree of atomic order an access to atom migration is gained, which is complementary to the usual diffusion experiments, where the degree of order is not changed on average. It is shown in this review on some selected examples how an adequate thermal treatment of the samples in combination with the experimental approach gives detailed information on atom jump mechanisms and structural changes, especially if experiment is combined with up-to-date kinetic Monte Carlo simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kentzinger, E., Parasote, V., Pierron-Bohnes, V., Lami, J.F., Cadeville, M.C., Sanchez, J.M., Caudron, R., Beuneu, B., Phys. Rev. B61, 14975 (2000).Google Scholar
2. Mehaddene, T., Sanchez, J.M., Caudron, R., Zemirli, M., and Pierron-Bohnes, V., Eur. Phys. J. B41, 207 (2004).Google Scholar
3. Pfeiler, W., In: ‘Properties of Complex Solids’, Ed. Gonis, A., Meike, A., and Turchi, P.E.A., Plenum Press, London 1997, p. 219.Google Scholar
4. Pfeiler, W., JOM 52, 14 (2000).Google Scholar
5. Pfeiler, W. and Sprusil, B., Mater. Sci. Eng. A324, 34 (2002).Google Scholar
6. Kozubski, R., Biborski, A., Kozubski, M., Pierron-Bohnes, V., Goyhenex, C., Pfeiler, W., Rennhofer, M., and Sepiol, B., Adv. Sol. Stat. Phys. 47, 277 (2008).Google Scholar
7. Pfeiler, W., Püschl, W., Kozubski, R., and Pierron-Bohnes, V., In: Solid-to-Solid Phase Transformations in Inorganic Materials 2005 (Howe, J.M., Laughlin, D.E., Lee, J.K., Dahmen, U., and Soffa, W.A., eds.), TMS-Proceedings (2005) volume 1, p. 187.Google Scholar
8. Issro, Ch., Püschl, W., Pfeiler, W., Rogl, P., Soffa, W., Schmerber, G., Kozubski, R., and Pierron-Bohnes, V., Metall. Mater. Trans. 37A, 3415 (2006).Google Scholar
9. Kozubski, R., Issro, Ch., Zapała, K., Kozłowski, M., Rennhofer, M., Partyka, E., Pierron-Bohnes, V., and Pfeiler, W., Z. Metallkde. 97, 273 (2006).Google Scholar
10. Kozubski, R., Kozłowski, M., Zapala, K., Pierron-Bohnes, V., Pfeiler, W., Rennhofer, M., Sepiol, B., and Vogl, G., J. Phase Equilib. Diffus. 26, 482 (2005).Google Scholar
11. Pierron-Bohnes, V., Mirebeau, I., Balanzat, E. and Cadeville, M.C., J. Phys. F: Met. Phys. 14, 197 (1984).Google Scholar
12. Rossiter, P.L., The electrical resistivity of metals and alloys (Cambridge: University Press, 1987), p. 160167.Google Scholar
13. Issro, Ch., Püschl, W., Pfeiler, W., Rogl, P., Soffa, W.A., Schmerber, G., Kozubski, R., and Pierron-Bohnes, V., Scr. Mater. 53, 447 (2005).Google Scholar
14. Issro, Ch., Püschl, W., Pfeiler, W., Sepiol, B., Rogl, P.F., Soffa, W.A., Acosta, Manuel, and Pierron-Bohnes, V., Mater. Res. Soc. Symp. Proc. 842, S3.10.16 (2005).Google Scholar
15. Lang, H., Uzawa, H., Mohri, T. and Pfeiler, W., Intermetallics 9, 9 (2001).Google Scholar
16. Balanzat, E. and Hillairet, J., J. Phys. F: Met. Phys. 11, 1977 (1981).Google Scholar
17. Pfeiler, W., Acta Metall. 36, 2417 (1988).Google Scholar
18. Ebner, R., Migschitz, M., Scholz, C., Urban-Erbil, B., Fratzl, P., and Pfeiler, W., In: Solid-Solid Phase Transformations, ed. Johnson, W.C. et al., TMS-Proceedings, Warrendale, 1994, p. 401.Google Scholar
19. Kozubski, R. and Pfeiler, W., Acta Mater. 44, 1573 (1996).Google Scholar
20. Kozubski, R., Prog. Mater. Sci. 41, 1 (1997).Google Scholar
21. Sattonay, G. and Dimitrov, O., Acta Mater. 47, 2077 (1999).Google Scholar
22. Kulovits, A., Püschl, W., Soffa, W.A., and Pfeiler, W., Mater. Res. Soc. Symp. Proc. 753, BB5.37.16 (2003).Google Scholar
23. Oramus, P., Kozubski, R., Pierron-Bohnes, V., Cadeville, M.C., and Pfeiler, W., Phys. Rev. B63, 174109/114 (2001).Google Scholar
24. Oramus, P., Kozubski, R., Pierron-Bohnes, V., Cadeville, M.C., Massobrio, C., and Pfeiler, W., Mater. Sci. Eng. A324, 11 (2002).Google Scholar
25. Kozubski, R., Kozłowski, M., Pierron-Bohnes, V., and Pfeiler, W., Z. Metallkde. 95, 880 (2004).Google Scholar
26. Oramus, P., Kozłowski, M., Kozubski, R., Pierron-Bohnes, V., Cadeville, M.C., and Pfeiler, W., Mater. Sci. Eng. A365, 166 (2004).Google Scholar
27. Kozubski, R., Kmieć, D., Partyka, E., and Danielewski, M., Intermetallics 11, 897 (2003).Google Scholar
28. Rennhofer, M., Sepiol, B., Sladecek, M., Kmieć, D., Stankov, S., Vogl, G., Kozlowski, M., Kozubski, R., Vantomme, A., Meersschaut, J., Rüffer, R., and Gupta, A., Phys. Rev. B 74, 104301(1-8), (2006).Google Scholar
29. Kulovits, A., Wiezorek, J., Soffa, W.A., Püschl, W., and Pfeiler, W., J. Alloys Compd. 378 285 (2004).Google Scholar
30. Issro, Ch., Pierron-Bohnes, V., Püschl, W., Kozubski, R., and Pfeiler, W., Mater. Res. Soc. Symp. Proc. 980, 0980-II03-07 (2007).Google Scholar
31. Ohno, M. and Mohri, T., Phil. Mag. 83, 315 (2003).Google Scholar
32. Lang, H., Uzawa, H., Mohri, T., and Pfeiler, W., Diffusion and Defect Data A: Defect and Diffusion Forum 194-199, 583 (2001).Google Scholar
33. Ersen, O., Goyhenex, C., and Pierron-Bohnes, V., Phys. Rev. B 78, 035429 (2008).Google Scholar
34. Montsouka, R. V., Goyhenex, C., Schmerber, G., Ulhaq-Bouillet, C., Derory, A., Faerber, J., Arabski, J., and Pierron-Bohnes, V., Phys. Rev. B 74, 144409 (2006).Google Scholar
35. Bryden, K.J. and Ying, J.Y.. J. Electrochem. Soc. 145, 3339 (1998).Google Scholar
36. Kulovits, A., Issro, Ch., Leonard, J., and Wiezorek, J., private communication.Google Scholar
37. Ersen, O., Parasote, V., Pierron-Bohnes, V., Cadeville, M.C., and Ulhaq-Bouillet, C., J. Appl. Phys. 93 2987 (2003).Google Scholar
38. Leitner, M., Vogtenhuber, D., Pfeiler, W., and Püschl, W., to be published.Google Scholar
39. Biborski, A., Zosiak, L., Kozubski, R., and Pierron-Bohnes, V., in the press for Intermetallics.Google Scholar