Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:30:33.080Z Has data issue: false hasContentIssue false

Dual-Mode Optical Molecular Switching Systems for Organic Memories

Published online by Cambridge University Press:  15 March 2011

D.S. Galvão
Affiliation:
Instituto de Física, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, CEP 13083-970, CP 6165, Brazil
S.F. Braga
Affiliation:
Instituto de Física, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, CEP 13083-970, CP 6165, Brazil
P.M.V.B. Barone
Affiliation:
Departamento de Física, Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Minas Gerais, CEP 36036-330, Brazil
S.O. Dantas
Affiliation:
Departamento de Física, Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Minas Gerais, CEP 36036-330, Brazil
Get access

Abstract

The synthesis of dual-mode optical molecular switching systems has been recently achieved. These systems were based on chiral helical-shaped alkenes in which the chirality can be reversibly modulated by light. In this work we report a theoretical study on the geometric and spectroscopic properties of these structures using the well-known semi-empirical methods PM3 (Parametric Method 3) and ZINDO/S-CI (Zerner's Intermediate Neglect of Differential Overlap -Spectroscopic - Configuration Interaction). Our results show that there are two stable conformers very close in energy for each possible molecular helicity presenting a barrier of ∼40 kcal/mol for bond rotation along the main molecular axis. Under protonation these barriers increase significantly and might explain why the protonation leads to the blocking of the switching process. We propose a scheme for the switching mechanism based on charge transfer and conformational changes during the isomer interconversion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drexler, K.E., Nanosystems: Molecular Machinery, Manufacturing and Computation; (Wiley: New York, 1992.).Google Scholar
2. Tsivgoulis, G.M., Lehn, J.-M., Chem. Eur. J. 2, 1399 (1996).Google Scholar
3. Stelacci, F., Bertarelli, C., Toscano, F., Galazzi, M.C., Zerbi, G., Chem. Phys. Let. 302, 563 (1999).Google Scholar
4. Zijlstra, R.W.J., Jager, W.F., Lange, B. de, Duijnen, P.Th. van, Feringa, B.L., Goto, H., Saito, A., Koumura, N., Harada, N., J. Org. Chem. 64, 1667 (1999).Google Scholar
5. Schoevaars, A.M., Kruizinga, W., Zijlstra, R.W.J., Veldman, N., Spek, A.L., Feringa, B.L., J. Org. Chem. 62, 4943 (1997).Google Scholar
6. Feringa, B.L., Huck, N.P.M., Scoevaars, A.M., Adv. Mater. 8, 681 (1996).Google Scholar
7. Huck, N.P.M., Jager, W.F., Lange, B. de, Feringa, B.L., Science 273, 1686 (1996); 276, 341 (1997).Google Scholar
8. Jager, W.F., Jong, J.C. de, Lange, B. de, Huck, N.P.M., Meetsma, A., Feringa, B.L., Angew. Chem., Int. Ed. Engl. 34, 348 (1995).Google Scholar
9. Huck, N.P.M., Feringa, B.L., J. Chem. Soc., Chem. Commun. 11, 1095 (1995).Google Scholar
10. Feringa, B.L., Jager, J.F., Lange, B. de, Tetrahedron 49, 275 (1995).Google Scholar
11. Barone, P.M.V.B., Dantas, S.O., Galvão, D.S., Synth. Met. 102, 1454 (1999).Google Scholar
12. Dantas, S.O., Barone, P.M.V.B., Braga, S.F., Galvão, D.S., Synth. Met. 116, 275 (2001).Google Scholar
13. Dewar, M.J.S., McKee, M.L., J. Amer. Chem. Soc. 99, 5231 (1977).Google Scholar
14. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., J. Amer. Chem. Soc. 107, 3902. (1985).Google Scholar
15. Stewart, J.J.P., J. Comp. Chem. 10, 209 (1991); 10, 221 (1991); MOPAC Program, version 6.0 Quantum Chemistry Program Exchange No. 455.Google Scholar
16. Zerner, M.C., in Reviews in Computational Chemistry II, ed. Lipkowitz, K.B.; Boyd, D.B. (VCH Publishers, 1991) Chapter 8.Google Scholar
17. Scano, P., Thompson, C., J. Comp. Chem. 12, 172 (1991).Google Scholar
18. Soos, Z.G., Galvão, D.S., J. Phys. Chem. 98, 1029 (1994) and references thereinGoogle Scholar
19. Galvão, D.S., Soos, Z.G., Ramasesha, S., Etemad, S., J. Chem. Phys. 98, 3016 (1993).Google Scholar
20. Barone, P.M.V.B., Dantas, S.O., Galvão, D.S., J. Mol. Struc. (THEOCHEM) 465, 219 (1999).Google Scholar
21. Ridley, J., Zerner, M.C., Theor. Chim. Acta 42, 223 (1976).Google Scholar
22. Edwards, W.D., Zerner, M.C., Theor. Chim. Acta 72, 347 (1987).Google Scholar
23. Bolívar-Marinez, L.E., Santos, M.C. dos, Galvão, D.S., J. Phys. Chem. 100, 11029 (1996).Google Scholar
24. Bolívar-Marinez, L.E., Galvão, D.S., Caldas, M.J., J. Phys. Chem B. 103, 2993 (1999).Google Scholar
25.Spartan Version 4.0, Wavefunction, Inc., 1840 Von Karman Ave., #370 Irvine, CA 92715 USA, © 1995 Wavefunction, Inc.Google Scholar
26.Chem2Pac: A Computational Chemistry Integrator for Windows, Cyrillo, M. and Galvão, D.S., http://www.ifi.unicamp.br/gsonm/chem2pac.Google Scholar
27. Cyrillo, M., Galvão, D.S., Eur. Photochem. Assoc. Newsletter 67, 31 (1999).Google Scholar