Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T14:23:13.782Z Has data issue: false hasContentIssue false

Dot Pattern Formation on Silicon Surfaces by Low-Energy Ion Beam Erosion

Published online by Cambridge University Press:  01 February 2011

B. Ziberi
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig, Germany.
F. Frost
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig, Germany.
T. Höche
Affiliation:
also affiliated with: 3D-Micromac AG, Max-Planck-Straβe 22b, D-09114 Chemnitz, Germany.
B. Rauschenbach
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig, Germany.
Get access

Abstract

Experimental studies of low-energy (≤ 2000 eV) Ar+ ion beam erosion of Si surfaces under normal and oblique ion incidence with simultaneous sample rotation at room temperature show a variety of topographies. At oblique ion incidence, between 70° and 80° with respect to surface normal, dot patterns evolve (dot size ∼ 30 nm) with a remarkably high degree of ordering comparable to dot nanostructures reported for different III/V compound semiconductors. The mean size and ordering of these nanostructures can be adjusted by various process parameters like ion beam energy and erosion time, respectively. Scanning force microscopy (AFM) has been used to characterize the evolution of the surface topography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murty, M. V. R., Surf. Sci. 500, 523 (2002).Google Scholar
2. Valbusa, U., Boragno, C., Buatier de Mongeot, F., J. Phys.: Condens. Matter 14, 8153 (2002).Google Scholar
3. Teichert, C., Physics Reports 365, 335 (2002).Google Scholar
4. Carter, G., Nobes, M. J., Paton, F., Williams, J. S., Radiat Eff. 33, 65 (1977).Google Scholar
5. Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A., Hartnagel, H. L., Science 285, 1551 (1999).Google Scholar
6. Frost, F., Schindler, A., Bigl, F., Phys. Rev. Lett. 85, 4116 (2000).Google Scholar
7. Frost, F., Ziberi, B., Höche, T., Rauschenbach, B., Nucl. Instrum. Methods Phys. Res., Sect. B 216, 9 (2004).Google Scholar
8. Gago, R., Vázquez, L., Cuerno, R., Varela, M., Ballesteros, C., Albella, J. M., Appl. Phys. Lett. 78, 3316 (2001).Google Scholar
9. Cuenat, A., Aziz, M. J., MRS Proc. 696, N2.8 (2002).Google Scholar
10. Ludwig, F., Eddy, C. R., Malis, O., Headrick, R. L., Appl. Phys. Lett. 81, 2770 (2002).Google Scholar
11. Zeuner, M., Meichsner, J., Neumann, H., Scholze, F., Bigl, F., J. Appl. Phys. 80, 611 (1996).Google Scholar
12. Tartz, M., Hartmann, E., Scholze, F., Neumann, H., Rev. Sci. Instrum. 69, 1147 (1998).Google Scholar
13. Zhao, Y., Wang, G.-C., Lu, T.-M., Characterization of Amorphous and Crystalline Rough Surfaces: Principles and Applications (Academic Press, San Diego, 2001) pp.732.Google Scholar
14. Ziberi, B., Frost, F., Tartz, M., Neumann, H., Rauschenbach, B., Thin Solid Films 459, 106 (2004).Google Scholar
15. Ziberi, B., Frost, F., Höche, T., Rauschenbach, B., Appl. Phys. Lett., submitted.Google Scholar