Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T02:36:14.541Z Has data issue: false hasContentIssue false

Doping of Oxidized Float Zone Silicon by Thermal Donors - a Low Thermal Budget Doping Method for Device Applications?

Published online by Cambridge University Press:  01 February 2011

R. Job
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
A.G. Ulyashin
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
Y.L. Huang
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
W.R. Fahrner
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
E. Simoen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
C. Claeys
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Electr. Eng. Dept., KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
F.-J. Niedernostheide
Affiliation:
Infineon AG, P.O. Box 80 09 49, D-81609 Munich, Germany
H.-J. Schulze
Affiliation:
Infineon AG, P.O. Box 80 09 49, D-81609 Munich, Germany
G. Tonelli
Affiliation:
IFN, Via Livornese 1291, I-56010 Pisa, Italy
Get access

Abstract

Thermal donor formation was studied in oxygen enriched high resistive float zone silicon (FZ Si:Oi). Such substrates are used e.g. for radiation hard detectors or high voltage devices. RF Plasma hydrogenation (110 MHz, 50 W) was carried out at 250°C for 1 hour. Subsequent annealing was done at 450°C/air for up to 50 h. The plasma treated and annealed FZ Si:Oi samples were analyzed by spreading resistance probe, capacitance-voltage and DLTS measurements. It is shown that a rapid formation of donors can be observed in oxidized FZ Si:Oi, but in a somewhat different way than in Czochralski (Cz) Si. While in Cz Si the hydrogen enhanced formation of ‘old’ thermal double donors occurs under the applied processes, in FZ Si:Oi most probably the formation of new hydrogen related shallow donors can be assumed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Job, R., Borchert, D., Bumay, Y.A., Fahrner, W.R., Grabosch, G., Khorunzhii, I.A., Ulyashin, A.G., MRS Symp. Proc. Series 469, 101 (1997)Google Scholar
2. Ulyashin, A.G., Bumay, Y.A., Job, R., Grabosch, G., Borchert, D., Fahrner, W.R., Diduk, A.Y., Solid State Phenomena 57-58, 189 (1997)Google Scholar
3. Job, R., Fahrner, W.R., Kazuchits, N.N., Ulyashin, A.G., MRS Symp. Proc. Series 513, 337 (1998)Google Scholar
4. Ulyashin, A.G., Bumay, Y.A., Job, R., Fahrner, W.R., Appl. Phys. A 66, 399 (1998)Google Scholar
5. Job, R., Ulyashin, A.G., Fahrner, W.R., Markevich, V.P., Murin, L.I., Lindström, J.L., Raiko, V., Engemann, J., in: High Purity Silicon VI, Electrochem. Soc. Proc. 2000-17, 209 (2000)Google Scholar
6. Job, R., Ulyashin, A.G., Fahrner, W.R., Niedernostheide, F.J., Schulze, H.J., Simoen, E., Claeys, C.L. and Tonelli, G., in: Proc. of the XIth Int. Workshop on the Physics of Semicond. Devices (IWPDS '2001), p. 405 (2002).Google Scholar
7. Job, R., Fahrner, W.R., Ulyashin, A.G., Mater. Sci. Engineer. B 73, 197 (2000)Google Scholar
8. Ruzin, A., Casse, G., Glaser, M., Lemeilleur, F., Nucl. Instr. and Meth. in Phys. Res. A 426, 94 (1999)Google Scholar
9. Ruzin, A., Casse, G., Glaser, M., Lemeilleur, F., Talamonti, R., Watts, S., Zanet, A., Nucl. Phys. B (Proc. Suppl.) 78, 645 (1999)Google Scholar
10. Dezillie, B., Li, Z., Eremin, V., Chen, W., Zhao, L.J., IEEE Trans. Nucl. Sci. 47, 1892 (2000)Google Scholar
11. Job, R., Ulyashin, A. G., Fahrner, W. R., Simoen, E., Claeys, C., Tonelli, G., Nucl. Instr. and Meth. B 186, 116 (2002)Google Scholar
12. Hartung, J., Weber, J., Phys. Rev. B 48, 14161 (1993)Google Scholar
13. McQuaid, S.A., Newman, R.C., Lightowlers, E.C., Semicond. Sci. Technol. 9, 1736 (1994)Google Scholar
14. Markevich, V.P., Suezawa, M., Sumino, K., Murin, L.I., J. Appl. Phys. 76, 7347 (1994)Google Scholar
15. Martynov, Yu. V., Gregorkiewicz, T., Ammerlaan, C.A.J., Phys. Rev. Lett. 74, 2030 (1995)Google Scholar
16. Stein, H.J., Medernach, J.W., J. Appl. Phys. 79, 2337 (1996)Google Scholar
17. Newman, R.C., Tucker, J.H., Semaltianos, N.G., Lightowlers, E.C., Gregorkiewicz, T., Zevenbergen, I.S., Ammerlaan, C.A.J., Phys. Rev. B 54, R6803 (1996).Google Scholar
18. Tokuda, Y., Ito, A, Ohshima, H., Semicond. Sci. Technol. 13, 194 (1998)Google Scholar
19. Gorelkinskii, Yu. V., Nevinnyi, N.N., Abdullin, K.A., J. Appl. Phys. 84, 4847 (1998)Google Scholar
20. Voronkov, V.V., Porrini, M., Collareta, P., Pretto, M.G., Scala, R., Falster, R., Voronkova, G.I., Batunina, A.V., Golovina, V.N., Arapkina, L.V., Guliaeva, A.S., Milvidski, M.G., J. Appl. Phys. 89, 4289 (2001)Google Scholar