Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T16:42:31.021Z Has data issue: false hasContentIssue false

Dopant diffusion in amorphous silicon

Published online by Cambridge University Press:  17 March 2011

R. Duffy
Affiliation:
Philips Research Leuven, Kapeldreef 75, 3001 Leuven, Belgium
V.C. Venezia
Affiliation:
Philips Research Leuven, Kapeldreef 75, 3001 Leuven, Belgium
A. Heringa
Affiliation:
Philips Research Leuven, Kapeldreef 75, 3001 Leuven, Belgium
M.J.P. Hopstaken
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The, Netherlands
G.C.J. Maas
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The, Netherlands
T. Dao
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The, Netherlands
Y. Tamminga
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The, Netherlands
F. Roozeboom
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The, Netherlands
Get access

Abstract

In this work we investigate the diffusion of high-concentration ultrashallow boron, fluorine, phosphorus, and arsenic profiles in amorphous silicon. We demonstrate that boron diffuses at high concentrations in amorphous silicon during low-temperature thermal annealing. Isothermal and isochronal anneal sequences indicate that there is an initial transient enhancement of diffusion. We have observed this transient diffusion characteristic both in amorphous silicon preamorphized by germanium ion implantation and also in amorphous silicon preamorphized by silicon ion implantation. We also show that the boron diffusivity in the amorphous region is similar with and without fluorine, and that the lack of diffusion for low-concentration boron profiles indicates that boron diffusion in amorphous silicon is driven by high concentrations. Ultrashallow high-concentration fluorine profiles diffuse quite rapidly in amorphous silicon, and like boron, undergo a definite transient enhancement. In contrast, ultrashallow high- concentration phosphorus and arsenic profiles did not significantly diffuse in our experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jeng, S. P. et al. , Appl. Phys. Lett. 61, 1310 (1992).Google Scholar
2. Tsai, M. Y. et al. , J. Appl. Phys. 50, 188 (1979).Google Scholar
3. Solmi, S. et al. , J. Appl. Phys. 69, 2135 (1991).Google Scholar
4. Fair, R., J. Electrochem. Soc. 137, 667 (1990).Google Scholar
5. Angelucci, R. et al. , J. Electrochem. Soc. 134, 3130 (1987).Google Scholar
6. Jacques, J. M. et al. , Appl. Phys. Lett. 82, 3469 (2003).Google Scholar
7. Duffy, R. et al. , Appl. Phys. Lett. in press (2004).Google Scholar
8. Pantelides, S., Solid State Communications 84, 221 (1992).Google Scholar
9. Roorda, S. et al. , Phys. Rev. B 44, 3702 (1991).Google Scholar
10. Roorda, S. et al. , Phys. Rev. Lett. 62, 1880 (1989).Google Scholar
11. Elliman, R. G. et al. , IEEE Conf. on Ion Impl. Tech. 1998, p.1055.Google Scholar
12. Nash, G. R. et al. , Appl. Phys. Lett. 75, 3671 (1999).Google Scholar
13. Streit, D. C. et al. , J. Vac. Sci. Technol. B 5, 752 (1987).Google Scholar
14. Coffa, S. et al. , Phys. Rev. B 45, 8355 (1992).Google Scholar
15. Street, R. A. et al. , Philos. Mag. B 56, 305 (1987).Google Scholar
16. Kuznetsov, A. Y. et al. , Appl. Phys. Lett. 66, 2229 (1995).Google Scholar
17. Larsen, A. Nylandsted et al. , J. Appl. Phys. 73, 691 (1993).Google Scholar
18. Agarwal, A. et al. , Appl. Phys. Lett. 74, 2331 (1999).Google Scholar
19. Zagwijn, P. M. et al. , J. Appl. Phys. 76, 5719 (1994).Google Scholar
20. Eaglesham, D. J. et al. , Appl. Phys. Lett. 65, 2305 (1994).Google Scholar