Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T03:47:04.877Z Has data issue: false hasContentIssue false

Donor-like Deep Level Defects in GaN Characterized by Double-correlation Deep Level Transient Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Mo Ahoujja
Affiliation:
[email protected], University of Dayton, Physics, 300 College park, Dayton, Ohio, 45469, United States
M Hogsed
Affiliation:
[email protected], Air force Institute of Technology, Engineering Physics, United States
Y. K. Yeo
Affiliation:
[email protected], Air force Institute of Technology, Engineering Physics, United States
R. L. Hengehold
Affiliation:
[email protected], Air force Institute of Technology, Engineering Physics, United States
Get access

Abstract

Si doped GaN grown by molecular beam epitaxy on sapphire substrates were characterized by capacitance transient spectroscopy. Conventional deep level transient spectroscopy (DLTS) measurements displayed six deep level defects, labeled A1, A, B, C1, C, and D, with activation energy ranging from 0.20 to 0.82 eV below the conduction band. Based on the logarithmic dependence of the DLTS spectral peaks on the filling pulse width, it is deduced that the defects A, B, C, and D are concentrated in the vicinity of line dislocations. Double-correlation DLTS (DDLTS) measurements, on the other hand, showed that only defects A (0.82 eV) and D (0.22 eV) exhibited deep donor-like characteristics. Following a 1.0 MeV electron irradiation of the GaN sample, one radiation-induced peak, E, with activation energy less than 0.20 eV was observed in the DLTS spectrum. However, after annealing at 350 °C, this DLTS peak intensity was found to diminish significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, A. P., Han, J., Ren, F., Waldrip, K. E., Abernathy, C. R., Luo, B., Dang, G., Johnson, J. W., Lee, K. P., and Pearton, S. J., Elechtochem. Solid-State Lett. 4, 39–G41 (2001).CrossRefGoogle Scholar
2. Walker, D., Kumar, V., Mi, K., Sandvik, P., Kung, P., Zhang, X. H., and Razeghi, M., Appl. Phys. Lett. 76, 403 (2000).CrossRefGoogle Scholar
3. Schremer, A. T., Smart, J. A., Wang, Y., Ambacher, O., MacDonald, N. C., and Shealy, J. R. Appl. Phys. Lett. 76, 736 (2000).CrossRefGoogle Scholar
4. Klein, P., Freitas, J., Binari, S., Wide-Bandgap Semiconductors for High-Power, High-Frequency and High-Temperature Applications, pp. 547552 (1999).Google Scholar
5. Klein, P., Freitas, J., Binari, S., Wickenden, A., Appl. Phys. Lett. 75, 4016 (1999).CrossRefGoogle Scholar
6. Hasnain, G., Takeuchi, T., Schneider, R., Song, S., Twist, R., Blomqvist, M., Kocot, C., and Flory, C., Electronic Letters 36, 1779 (2000).Google Scholar
7. Fang, Z-Q., Look, D. C., Kim, W., and Morkoc, H., MRS Internet J. Nitride Semicond. Res. 5S1, W11.84 (2000).Google Scholar
8. Hacke, P., Detchprohm, T., Hiramatsu, K., Sawaki, N., Tadatomo, K., and Miyake, K.. J. Appl. Phys. 76, 304 (1994).CrossRefGoogle Scholar
9. Auret, F. D. and Goodman, S. A., III-Nitride Semiconductors: Electrical, Structural, and Defect Properties. Manasreh, M.O. (Ed.) 251 (2000).CrossRefGoogle Scholar
10. Auret, F. D., Goodman, S. A., Koschnick, F. K., Spaeth, J.-M., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 74 407 (1999).CrossRefGoogle Scholar
11. Look, D. C.. “Defect-related donors, acceptors, and traps in GaN,” Phys. Stat. Sol. B 228, 293 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
12. Boudinov, H., Kucheyev, S. O., Williams, J. S., Jagadish, C., and Li, G., Appl. Phys. Lett. 78, 943 (2001).CrossRefGoogle Scholar
13. Fang, Z-Q., Look, D. C., and Polenta, L., J. Phys.: Condens. Matter 14, 13061 (2002).Google Scholar
14. Polenta, L., Fang, Z-Q., and Look, D. C.. “On the main irradiation-induced defect in GaN,” Appl. Phys. Lett. 76 2086 (2000).CrossRefGoogle Scholar
15. Gotz, W., Johnson, N. M., Bremser, M. D., and Davis, R. F., Appl. Phys. Lett. 69, 2379 (1996).CrossRefGoogle Scholar