Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T07:07:25.216Z Has data issue: false hasContentIssue false

Does Osmium Carbide Exist? Ab initio Investigation

Published online by Cambridge University Press:  26 February 2011

M. Zemzemi
Affiliation:
[email protected], Université Paris 7, Matériaux et Phénomènes Quantiques, CNRS UMR 7162 2 place Jussieu, Paris, Cedex 05, F-75251, France
M. Hebbache
Affiliation:
[email protected], Université Paris 7, Matériaux et Phénomènes Quantiques, CNRS UMR 7162 2 place Jussieu, Paris, Cedex 05, F-75251, France
D. Zivkovic
Affiliation:
[email protected], University of Belgrade, Department of Metallurgy, VJ12, Bor, Serbia, 19210, Yugoslavia
L Stuparevic
Affiliation:
[email protected], University of Belgrade, Department of Metallurgy, VJ12, Bor, Serbia, 19210, Yugoslavia
Get access

Abstract

Transition metals of the platinum group (Os, Ir, Pt, Ru, Re, Rh) do not form carbides and nitrides at ambient pressure. Osmium carbide seems to have been synthesized at zero pressure by Kempter and Nadler forty six years ago. According to the authors, OsC crystallizes in WC-type structure and has a hardness equal to 2000 kg mm-2. Up to date, no other experimental confirmation is available. We studied the electronic and mechanical properties of this hypothetical carbide using an approach based on the density-functional theory. We found that the work of the above mentioned authors is sound. The calculated lattice parameters are in good agreement with that given by those authors and a rough estimate also showed that the hardness given by them is reasonable. However, we found that the hexagonal structure of osmium carbide is electronically and mechanically unstable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Toth, L., Transition Metal Carbides and Nitrides (Academic Press, N. Y., 1971).Google Scholar
[2] Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H. K. and Hemley, R. J., Nature Materials 3, 294 (2004).Google Scholar
[3] Crowhurst, J. C., Goncharov, A. F., Sadigh, B., Evans, C. L., Morall, P. G., Ferreira, J. L. et Nelson, A. J., Science 311, 1275 (2006).Google Scholar
[4] Young, A. F., Sanloup, C., Gregoryang, E., Scandolo, S., Hemley, R. J. and Mao, H.K., Phys; Rev. Lett. 96, 155501 (2006).Google Scholar
[5] Kempter, C. P. and Nadler, M. R., J. Chem. Phys. 33, 1580 (1960); C. P. Kempter, J. Chem. Phys. 41, 1515 (1964)Google Scholar
[6] Kohn, W., and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
[7] Blaha, P., Schwarz, S., Madsen, G. K. H., Kvasnicka, D. and Luitz, J., Computer Code WIEN2k (Vienna University of Technology, Vienna, 2001).Google Scholar
[8] Perdew, J. P., Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
[9] Moissan, H., C.R. Acad. Sci. Paris 142, 26 (1906).Google Scholar
[10] Moffatt, W. G., Binary Phase Diagrams Handbook (GEC, Schenectady, N.Y., 1984).Google Scholar
[11] Guillermet, A. F., Haglund, j. and Grimvall, G., Phys. Rev. B 48, 11673 (1993); J. C.Grossman, A.Mizel, M.Côté, M. L.Cohen and S. G.Louie, Phys. Rev. B 60, 6343 (1999); J. C.Zheng, Phys. Rev. B 72, 052105 (2005).Google Scholar
[12] Hebbache, M., Stuparevic, L. and Zivkovic, D., Solid state Commun. 139, 227 (2006).Google Scholar
[13] Hebbache, M., Solid State Commun. 113, 427 (2000).Google Scholar
[14] Gubicza, J., Ribarik, G., Goren-Muginstein, G.R., Rosen, A. R. and Ungar, T., Mater. Sci. Eng. A 309, 60 (2001).Google Scholar
[15] Jaffee, R.I., Maykuth, D. J. and Douglas, R. W., Refractory Metals and Alloys, Semchyshen, M. and Harwood, J. J., eds., (Interscience, N.Y., 1961) p.383.Google Scholar
[16] Teter, D. M., MRS Bull. 23, 22 (1998).Google Scholar
[17] Holleck, H., J. Vac. Sci. Technol. A 4 (1986) 2661.Google Scholar