Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:28:36.078Z Has data issue: false hasContentIssue false

Distributions of Concentration Limits for the Source Term in Performance Assessments

Published online by Cambridge University Press:  17 March 2011

William M. Murphy
Affiliation:
College of Natural Sciences California State University, Chico, California 95929-0205 USA; [email protected]
Steve Soldavini
Affiliation:
College of Natural Sciences California State University, Chico, California 95929-0205, USA
Colin M. Gallagher
Affiliation:
College of Natural Sciences California State University, Chico, California 95929-0205, USA
Get access

Abstract

Radionuclide concentration limits are important parameters in performance assessments for geologic disposal of nuclear waste, but their statistical distributions are challenging to define. Thermodynamic solubilities provide an attractive theoretical constraint, but solubilities do not provide a basis for distribution functions, and concentration limits can exceed solubilities in irreversible systems. Distributions of natural concentrations are broad and do not correspond to distributions of concentration limits. Interpretations of natural nickel and lead concentrations suggest that they do not represent concentration limit distributions. Interpretation of groundwater data for dissolved calcium indicates a bimodal distribution, which hypothetically corresponds to a solubility-limited population and a population of values below the solubility limits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mohanty, S., Adams, G., and Pabalan, R., Nucl. Eng. Sci. (2003) (submitted).Google Scholar
2. McKinley, I. G. and Savage, D., Radiochim. Acta, 66/67, 657 (1994).Google Scholar
3. CNWRA, System-level performance assessment of the proposed repository at Yucca Mountain using the TPA version 4.1 code (CNWRA, San Antonio, TX, 2002).Google Scholar
4. Wilson, M. L. et al., Total system performance assessment for Yucca Mountain – SNL second iteration (TSPA-1993) (Sandia National Lab., Albuquerque, NM, 1994).Google Scholar
5. CRWMS, Total system performance assessment-viability assessment (TSPA-VA) analyses technical basis document (TRW, Las Vegas, NV, 1998).Google Scholar
6. Ahrens, L. H., Geochim. Cosmochim. Acta, 5, 49 (1954).Google Scholar
7. Ahrens, L. H., Geochim. Cosmochim. Acta, 6, 121 (1954).Google Scholar
8. Link, R. F. and Koch, G. S. Jr, Math. Geol., 7, 117 (1975).Google Scholar
9. Reimann, C. and Filzmoser, P., Environ. Geol., 39, 1001 (2000).Google Scholar
10. Helsel, D. R., Environ. Sci. Tech., 24, 1766 (1990).Google Scholar
11. Allègre, C. J. and Lewin, E., Earth Planet. Sci. Let., 132, 1 (1995).Google Scholar
12. CRWMS M&O, Dissolved concentration limits of radioactive elements, ANL-WIS-MD- 000010 rev 02 (Civilian Radioactive Waste Management System Management & Operating Contractor, Las Vegas, NV, 2003).Google Scholar
13. Murphy, W. M. and Pearcy, E. C., in Scientific Basis for Nuclear Waste Management XV, ed. Sombret, C. (Mater. Res. Soc. Proc. 257, Warrendale, PA, 1992), pp. 521527.Google Scholar
14. Murphy, W. M. and Codell, R. B., in Scientific Basis for Nuclear Waste Management XXII, ed. Wronkiewicz, D. J. and Lee, J. H. (Mater. Res. Soc. Proc. 556, Warrendale, PA, 1999), pp. 551558.Google Scholar
15. Chen, Y., Loch, A. R., Wolery, T. J., Steinborn, T. L., Brady, P. V., and Stockman, C. T., in Scientific Basis for Nuclear Waste Management XXV, ed. McGrail, B. P. and Cragnolino, G. A. (Mater. Res. Soc. Proc. 713, 2002), pp. 775782.Google Scholar
16. Criscenti, L. J., Laniak, G. F., and Erikson, R. L., Geochim. Cosmochim. Acta, 60, 3551 (1996).Google Scholar
17. Newcomb, W. D. and Rimstidt, J. D., Appl. Geochem., 17, 49 (2000). http://water.usgs.gov/owq/data.htmlGoogle Scholar
18.USGS National Water Quality Assessment Data Warehouse, 2004,Google Scholar
19. Venables, W. N. and Ripley, B. D., Modern Applied Statistics with S-Plus (Springer, 1996).Google Scholar
20. Silverman, B. W., Density Estimation for Statistics and Data Analysis (Chapman & Hall, 1986).Google Scholar
21. Silverman, B. W., in Probability, Statistics and Analysis, ed. Kingman, J. F. C. and Reuter, G. E. H. (Cambridge University Press, 1983), pp. 248259.Google Scholar
22. Jones, M. C., The projection pursuit algorithm for exploratory data analysis, Ph.D. Thesis, University of Bath (1983).Google Scholar