No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
In this paper, we propose the design and fabrication of buried silicon optical interconnect technology, the sub-surface silicon optical bus (S3B). The proposed approach relies on engineering the dispersion properties of embedded silicon three-dimensional photonic crystals to create sub-micron routing channels and control light propagation. Further, we present a method for the fabrication of buried three-dimensional (3D) photonic-crystal structures using conventional planar silicon micromachining. The method utilizes a single planar etch mask coupled with time-multiplexed, sidewall-passivating, deep anisotropic reactive-ion etching, to create an array of spherical voids with three-dimensional symmetry. Preliminary results are presented that demonstrate the feasibility of realizing chip-scale optical interconnects using our proposed approach.