Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:11:40.909Z Has data issue: false hasContentIssue false

Dislocation Nucleation, Growth and Suppression During Cw Laser Annealing of Silicon

Published online by Cambridge University Press:  15 February 2011

G.A. Rozgonyi
Affiliation:
Max-Planck-Institut für Festkörperforschung,
H. Baumgart
Affiliation:
Max-Planck-Institut für Festkörperforschung,
F. Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung Heisenbergstr.1, D–7000 Stuttgart 80 Federal Republic of Germany
Get access

Abstract

Optical, X-ray and transmission electron microscopy plus preferential chemical etching have been used to examine the dislocations and lattice strain introduced during cw laser annealing of silicon. In addition to a substrate scanning mode we operate our cw Ar-ion laser in a “pulse” mode by using an electronically activated shutter located within the laser cavity. This permits accurate measurements to be made on isolated spots or large area scans with a dislocation density that can be deliberately varied. In particular we discuss surface slip traces, their component dislocations and resulting lattice strains, as well as submicron extrinsic dislocation loops which result from the condensation of ion-implantation produced interstitial silicon. Recommendations are presented for producing defect and strain-free material, as well as samples with specific densities of dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rozgonyi, G.A., in Festkörperprobleme (Advances in Solid State Physics),Vol. XX, pg. 229, Treusch, J. (Ed.), Vieweg, Braunschweig 1980.Google Scholar
2. Rozgonyi, G.A. and Baumgart, H., J. de Physique 41, Suppl. 5, pg. C485 (1980).Google Scholar
3. Kolbesen, B.O., Mayer, K.R. and Schuh, G.E., J. Physics E 8, 197 (1975).CrossRefGoogle Scholar
4. Secco D'Aragona, F., J. Electrochem. Soc. 119, 948 (1972).CrossRefGoogle Scholar
5. Baumgart, H., Phillipp, F., Rozgonyi, G.A. and Gösele, U., Appl. Phys. Lett. 38, (1981).CrossRefGoogle Scholar
6. Rozgonyi, G.A., Leamy, H.J., Sheng, T.T. and Celler, G.K., Laser-Solid Interactions and Laser Processing, Ferris, S.D., Leamy, H.J. and Poate, J.M.(Eds.) AIP Proc. 50, 47 (1979).Google Scholar
7. Föll, H. and Wilkens, M., Phys. Stat. Solidus 31a, 519 (1975).CrossRefGoogle Scholar
8. Ishida, K., Kobayashi, H.O. and Yoshida, M., Appl. Phys. Lett. 37, 175 (1980).CrossRefGoogle Scholar
9. Rozgonyi, G.A. and Miller, D.C., in Crystal Growth: A Tutorial Approach, Bardsley, W., Hurle, D.T.J. and Mullin, J.B. (Eds.)Google Scholar
10. Baumgart, H., Hildebrand, O. and Rozgonyi, G.A., to be published.Google Scholar
11. Mizuta, M., Sheng, N.H., Merz, J.L., Lietoila, A., Gold, R.B. and Gibbons, J.F., Appl. Phys. Lett. 37, 154 (1980).CrossRefGoogle Scholar
12. Celler, G.K., Poate, J.M., Rozgonyi, G.A. and Sheng, T.T., J. Appl. Phys. 50, 7264 (1979).CrossRefGoogle Scholar
13. Larson, B.C., White, C.W. and Appleton, B.R., Appl. Phys. Lett. 32, 801 (1978).CrossRefGoogle Scholar
14. Leamy, H.J., Ferris, S.D., Miller, G.L., Brown, W.L. and Celler, G.K. pg. 556 in ref. 6.Google Scholar
15. Pearce, C.W. and Zaleckas, V.J., J. Electrochem. Soc. 126, 1436 (1979).CrossRefGoogle Scholar
16. Uebbing, R., Wagner, P., Baumgart, H. and Queisser, H.J., Appl. Phys. Lett. 37, (1980).CrossRefGoogle Scholar