Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T23:05:23.402Z Has data issue: false hasContentIssue false

A Dislocation Model for Flow at Intermediate Temperatures in Hard-Oriented NiAl

Published online by Cambridge University Press:  22 February 2011

M. J. Mills
Affiliation:
Dept. of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
M. S. Daw
Affiliation:
Dept. of Physics, Clemson University, Clemson, SC 29634–1911
J.E. Angelo
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
D. B. Miracle
Affiliation:
Air Force Wright Laboratory, WPAFB, OH 45433.
Get access

Abstract

Recent studies of single crystals and bicrystals indicate that dislocations of the type a<011> are important, and may actually control, deformation at intermediate temperatures (above the brittle-to-ductile transition temperature) in hard-oriented NiAl. In the present work, the fine structure of a<011> dislocations has been examined using both high resolution and diffraction-contrast transmission electron microscopy. Evidence has been found for the decomposition of a<011> dislocations into two a<001> dislocations. The initial driving force for the decomposition is due to core effects, as revealed by molecular statics and dynamics Embedded Atom Method calculations. Additional decomposition occurs by a combination of climb and glide. A continuum-based dislocation model is introduced which incorporates these relevant microstructural features.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, J. T., Ph.D. Dissertation, Univ. of Michigan (1991).Google Scholar
2. Field, R. D., Lahrman, D. F. and Darolia, R., Acta metall. mater., 39, (1991), 2951.Google Scholar
3. Pascoe, R. T. and Newey, C. W. A., Phys. Stat. Sol., 29, 357 (1968).Google Scholar
4. Loretto, M. H. and Wasilewski, R. J., Phil. Mag., 23, 111 (1971).Google Scholar
5. Fraser, H. L., Loretto, M. H. and Smallman, R. E., Phil. Mag., 28, 651 (1973).Google Scholar
6. Lahrman, D. F., Field, R. D. and Darolia, R., MRS Proceedings, 213, 603 (1991).Google Scholar
7. Miracle, D. B., Ph.D. Dissertation, Ohio State University (1990).Google Scholar
8. Miracle, D. B., Acta metall. mater., 39, 1457 (1991).Google Scholar
9. Daw, M. S. and Baskes, M. I., Phys. Rev. B, 29, 6443 (1984).Google Scholar
10. Glatzel, U., Forbes, K. R. and Nix, W. D., Phil. Mag. A, 67, 307 (1993).Google Scholar
11. Mills, M. J. and Miracle, D. B., Acta metall. mater., 41, 85 (1993).Google Scholar
12. Mills, M. J., Daw, M. S., Foiles, S. M. and Miracle, D. B., MRS Proceedings, 288, 257 (1993).Google Scholar
13. Mills, M. J., Angelo, J. E., Daw, M. S., Weinberg, J. D. and Miracle, D. B., Mater. Sci. Eng., in press.Google Scholar
14. Farkas, D., Pasianot, R., Savino, E. J. and Miracle, D. B., MRS Proceedings, 213, 223 (1991).Google Scholar
15. Parthasarathy, T. A., Rao, S. I. and Dimiduk, D. M., Phil. Mag. A, 67, 643 (1993).Google Scholar
16. Nabarro, F. R. N., Theory of Crystal Dislocations (Dover Publications, New York, 1987), p. 349.Google Scholar
17. Forbes, K. R., Glatzel, U., Darolia, R. and Nix, W. D., Mat. Res. Soc. Proc., 288 (1993) 45.Google Scholar