Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:27:47.971Z Has data issue: false hasContentIssue false

Dislocation Interaction with Point Defects in Transition-Metal Disilicides

Published online by Cambridge University Press:  21 March 2011

Man H. Yoo*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory Oak Ridge, TN 37831–6115, U.S.A.
Get access

Abstract

Energetics of the formation of jog-pairs and kink-pairs on a straight dislocation are analyzed using anisotropic elasticity theory for the equivalent slip systems of seven transition-metal disilicides. While glide loops of the active slip systems are stable in all cases, having positive line tension, the interaction energies of two opposite segments in kink-pairs and jog-pairs are found to be very anisotropic with respect to dislocation orientation. The anisotropic interaction plays an important role in the glide resistance due to dislocation-point defect interactions. A dislocation model is proposed for the glide resistance on edge and near edge dislocations based on jog-pairs resulting from the contact interaction between dislocations and intrinsic point defects. The available data of yield strength anomaly and dislocation structures of disilicide crystals are discussed in view of the proposed model for jog-pair pinning and dynamic breakaway.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlsson, A. E. and Meschter, P. J., J. Mater. Res. 6, 1512 (1991).Google Scholar
2. Nakamura, M., Matsumoto, S., and Hirano, T., J. Mater. Sci. 25, 3309 (1990).Google Scholar
3. Chu, F., Lei, M., Maloy, S. A., Petrovic, J. J., and Mitchell, T. E., Acta Mater. 44, 3035 (1996).Google Scholar
4. Tanaka, K., Inui, H., Yamaguchi, M., and Koiwa, M. Mater. Sci. Eng. A261, 158 (1999).Google Scholar
5. Inui, H., Moriwaki, M., Ishikawa, K., and Yamaguchi, M., Electron Microscopy 1998, Vol. II, ed. Calderon-Benavides, H. A. and Yacaman, M. J. (Bristol, 1998), pp.4950.Google Scholar
6. Ito, K., Moriwaki, M., Nakamoto, T., Inui, H., and Yamaguchi, M., Mater. Sci. Eng. A233, 33 (1997).Google Scholar
7. Ito, K., Inui, H., Shirai, Y., Yamaguchi, M., Phil. Mag. A72, 1075 (1995).Google Scholar
8. Moriwaki, M., Ito, K., Inui, H., and Yamaguchi, M., Mater. Sci. Eng. A239–240, 69 (1997).Google Scholar
9. Yoo, M. H., Yoshimi, K., and Hanada, S., Acta Mater. 47, 3579 (1999).Google Scholar
10. Tanaka, K., Onome, H., Inui, H., Yamaguchi, M., and Koiwa, M., Mater. Sci. Eng. A239–240, 188 (1997).Google Scholar
11. Yoo, M. H., Horton, J. A., and Liu, C. T., Acta Metall. 36, 2945 (1988).Google Scholar
12. Ito, K., Yano, T., Nakamoto, T., Inui, H., and Yamaguchi, M., Acta Mater. 47, 937 (1999).Google Scholar
13. Guder, S., Bartsch, M., Yamaguchi, M., and Messerschmidt, U., Mater. Sci. Eng. A261, 139 (1999).Google Scholar
14. Messerschmidt, U., Guder, S., Junker, L., Bartsch, M., and Yamaguchi, M., Mater. Sci. Eng. A (2001) (in press)Google Scholar
15. Maloy, S., Mitchell, T. E., and Heuer, A. H., Acta Metall. Mater. 43, 657 (1995).Google Scholar
16. Evans, D. J., Court, S. A., Hazzledine, P. M., and Frazer, H. L., Phil. Mag. Lett. 67, 331 (1993).Google Scholar
17. Nakano, T., Kishimoto, M., Furuta, D., and Umakoshi, Y., Acta Mater. 48, 3465 (2000).Google Scholar