Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:15:34.506Z Has data issue: false hasContentIssue false

Dislocation Configurations Around Nanoindentations in Reconstructed Au(001)

Published online by Cambridge University Press:  17 March 2011

O. Rodríguez de la Fuente
Affiliation:
Departamento de Física de Materiales, Universidad Complutense, 28040 Madrid, Spain
M.A. González
Affiliation:
Departamento de Física de Materiales, Universidad Complutense, 28040 Madrid, Spain
J.M. Rojo
Affiliation:
Departamento de Física de Materiales, Universidad Complutense, 28040 Madrid, Spain
Get access

Abstract

Nanoindentations resulting from STM tungsten tip contacts with the 5×20 reconstructed surface of a Au(001) crystal around the indentation point have been studied by Scanning Tunnel Microscopy (STM). A novel defect structure is recognised: a row of hillocks extending along more than a hundred nm along the <110> directions stemming from the indentation point. These hillocks have about 7 nm of side and 0.06 nm of height. With the help of simulation models we identify individual hillocks as dislocation configurations consisting of two stacking fault ribbons encompassed by Shockley partials having a stair-rod dislocation as a ridge. It is proposed that hillocks are generated by plastic flow, from an initially nucleated V-shaped dislocation loop intersecting the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pérez, Rubén, Payne, Michael C. and Alan Simpson, D., Phys. Rev. Lett., 75, 4748 (1995).Google Scholar
2. Tadmor, E.B., Miller, R., Phillips, R. and Ortiz, M., J. Mater. Res., 14, 2233 (1999).Google Scholar
3. Kelcher, Cynthia L., Plimpton, S.J. and Hamilton, J.C., Phys. Rev. B, 58, 11085 (1998).Google Scholar
4. Zimmerman, Jonathan A., Klein, Patrick A. and Foiles, Stephen M., these Proceedings.Google Scholar
5. Corcoran, S.G., Colton, R.J., Lilleodden, E.T. and Gerberich, W.W., Phys. Rev. B, 55, 16057 (1997).Google Scholar
6. Kiely, J.D. and Houston, J.E., Phys. Rev. B, 57, 12588 (1998).Google Scholar
7. Kiely, J.D., Hwang, R.Q. and Houston, J.E., Phys. Rev. Lett., 81, 4424 (1998).Google Scholar
8. Kiely, J.D., Jarausch, K.F., Houston, J.E. and Russell, P.E., J. Mater. Res., 14, 2219 (1999).Google Scholar
9. Fuente, O. Rodríguez de la, González, M.A. and Rojo, J.M., Phys. Rev. B, in press.Google Scholar
10. Figuera, J. de la, González, M.A., Martínez, R. García, Rojo, J.M., Hernán, O.S., Parga, A.L. Vázquez de and Miranda, R., Phys. Rev. B, 58, 1169 (1998).Google Scholar
11. Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd ed. (McGraw-Hill, New York, 1972).Google Scholar