Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T06:27:03.005Z Has data issue: false hasContentIssue false

Dislocation Annihilation in L12 Alloys

Published online by Cambridge University Press:  22 February 2011

Xiaoli Shi
Affiliation:
CNRS-ONERA, BP 72, 92322 Châtillon Cedex, France.
Georges Saada
Affiliation:
CNRS-ONERA, BP 72, 92322 Châtillon Cedex, France.
Patrick VeyssiÈre Lem
Affiliation:
Unité Mixte de Recherche : Centre National de la Recherche Scientifique (CNRS) - Office National d’Etude et de Recherche Aérospatiale (ONERA) UMR 104.
Get access

Abstract

A transmission electron microscope (TEM) study of dislocation reactions that take place during the first few percents of permanent strain at room temperature is presented. The nature of the dipolar segments, a noticeable feature within the deformation microstructure, is elucidated. It is determined that antiphase boundary (APB) tube formation is unlikely to stem from the annihilation between a mobile superdislocation and an immobilized Kear-Wilsdorf (KW) configuration, at variance from what has been expected so far. A clear relationship between APB tubes and superlattice stacking fault (SSF) dipoles is pointed out.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hirsch, P.B., J. Phys. III 1 (1991) 989 ; Phil. Mag. A 65, 569 (1992) ; Progr. Mater. Sci., 36, 63(1992).Google Scholar
[2] Veyssière, P. and Saada, G., in Dislocations in Solids, ed. by Nabarro, F.R.N., vol. 10 (Elsevier, Amsterdam, 1995), in press.Google Scholar
[3] Caillard, D. and Couret, A., vol. 10 (Elsevier, Amsterdam, 1995), in press.Google Scholar
[4] Bontemps, C., , C. and Veyssière, P., Phil. Mag. A., 61, 259 (1990).Google Scholar
[5] Baluc, N., Bonneville, J., Hemker, K.J., Martin, J.L., in Intermetallic Compounds, edited by Ozumi, O., (The Japan Institute of Metals, Sendai, 1991), p. 323.Google Scholar
[6] Sun, Y.Q., PhD Thesis. University of Oxford (1990).Google Scholar
[7] Ngan, A.H.W., Jones, I.P. and Smallman, R.E., Phil. Mag. A, 66, 55 (1992).Google Scholar
[8] Sun, Y.Q., Phil. Mag. A, 65, 287 (1992).Google Scholar
[9] Ngan, A.H.W., Jones, I.P. and Smallman, R.E., Phil. Mag. A, 67, 417 (1999).Google Scholar
[10] Sun, Y. Q. and Hazzledine, P.M., Phil. Mag. A, 58, 603 (1988).Google Scholar
[11] Couret, A., Sun, Y.Q. and Hazzledine, P.M., MRS Proceedings, 213, 317 (1993).Google Scholar
[12] Nabarro, F.R.N., in Theory of Crystal Dislocations, (Clarendon Press, Oxford, 1967), p. 431.Google Scholar
[13] Shi, X., Saada, G. and Veyssière, P., Phil. Mag. Letters, 70 (1994) in press.Google Scholar
[14] Mulford, R.A. and Pope, D.P., Acta metall., 21, 1375 (1973).Google Scholar
[15] Vidoz, A.E. and Brown, L.M., Phil. Mag., 7, 1167 (1962).Google Scholar
[16] Chou, C.T., Hazzledine, P.M., Hirsch, P.B. and Anstis, G.R., Phil. Mag. A, 56, 799 (1987).Google Scholar
[17] Hazzledine, P.M. and Hirsch, P.B., MRS Proceedings, 81, 75 (1987).Google Scholar
[18] Saada, G., Shi, X. and Veyssière, P., MRS Proceedings, this conference.Google Scholar
[19] Shi, X., Dimiduk, D., Saada, G. and Veyssière, P., in preparation.Google Scholar