Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T07:11:33.571Z Has data issue: false hasContentIssue false

Discrete dislocation dynamics simulations of twin size-effects in magnesium

Published online by Cambridge University Press:  12 February 2015

Haidong Fan*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA Department of Mechanics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
Sylvie Aubry
Affiliation:
Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
A. Arsenlis
Affiliation:
Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
Jaafar A. El-Awady*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
*
*E-mails: [email protected] (H. Fan), [email protected] (J. A. El-Awady)
*E-mails: [email protected] (H. Fan), [email protected] (J. A. El-Awady)
Get access

Abstract

A dislocation-{101̅2} twin boundary (TB) interaction model was proposed and introduced into discrete dislocation dynamics simulations to study the mechanical behavior of micro-twinned Mg. Strong strain hardening was captured by current simulations, which is associated with the strong TB’s barrier effect. In addition, twin size effects with small TB spacing leading to a strong yield stress, were observed to be orientation dependent. Basal slip orientation produces a strong size effect, while prismatic slip does a weak one.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Christian, J.W. and Mahajan, S., Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
Jiang, L., Jonas, J.J., Luo, A.A., Sachdev, A.K. and Godet, S., Mater. Sci. Eng. A 445446, 302 (2007).CrossRefGoogle Scholar
Knezevic, M., Levinson, A., Harris, R., Mishra, R.K., Doherty, R.D. and Kalidindi, S.R., Acta Mater. 58, 6230 (2010).CrossRefGoogle Scholar
Barnett, M.R., Keshavarz, Z., Beer, A.G. and Atwell, D., Acta Mater. 52, 5093 (2004).CrossRefGoogle Scholar
Fan, H., Aubry, S., Arsenlis, A. and El-Awady, J.A., The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations (submitted).Google Scholar
Van der Giessen, E. and Needleman, A., Model. Simul. Mater. Sci. Eng. 3, 689 (1995).CrossRefGoogle Scholar
Fan, H., Li, Z., Huang, M. and Zhang, X., Int. J. Solids. Struct. 48, 1754 (2011).CrossRefGoogle Scholar
Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T.G. and Bulatov, V.V., Model. Simul. Mater. Sci. Eng. 15, 553 (2007).CrossRefGoogle Scholar
Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V. and Brechet, Y., Solid State Phenom. 2324, 455 (1992).CrossRefGoogle Scholar
El-Awady, J.A., Bulent Biner, S. and Ghoniem, N.M., J. Mech. Phys. Solids 56, 2019 (2008).CrossRefGoogle Scholar
Fan, H., Li, Z. and Huang, M., Scripta Mater. 67, 225 (2012).CrossRefGoogle Scholar
Ouyang, C., Li, Z., Huang, M. and Fan, H., Int. J. Solids. Struct. 47, 3103 (2010).CrossRefGoogle Scholar
Li, Z., Hou, C., Huang, M. and Ouyang, C., Comp. Mater. Sci. 46, 1124 (2009).CrossRefGoogle Scholar
Huang, M., Li, Z. and Tong, J., Int. J. Plast. 61, 112 (2014).CrossRefGoogle Scholar
Fan, H., Li, Z. and Huang, M., Scripta Mater. 66, 813 (2012).CrossRefGoogle Scholar
Wu, C.C., Chung, P.W., Aubry, S., Munday, L.B. and Arsenlis, A., Acta Mater. 61, 3422 (2013).CrossRefGoogle Scholar
Monnet, G., Devincre, B. and Kubin, L.P., Acta Mater. 52, 4317 (2004).CrossRefGoogle Scholar
Fan, H., Aubry, S., Arsenlis, A. and El-Awady, J.A., Scripta Mater. 97, 25 (2015).CrossRefGoogle Scholar
Aitken, Z.H., Fan, H., El-Awady, J.A. and Greer, J.R., J. Mech. Phys. Solids 76, 208 (2015).CrossRefGoogle Scholar
Capolungo, L., Beyerlein, I.J. and Wang, Z.Q., Model. Simul. Mater. Sci. Eng. 18, 085002 (2010).CrossRefGoogle Scholar
Olarnrithinun, S., Chakravarthy, S.S. and Curtin, W.A., J. Mech. Phys. Solids 61, 1391 (2013).CrossRefGoogle Scholar
Groh, S., Marin, E.B., Horstemeyer, M.F. and Bammann, D.J., Model. Simul. Mater. Sci. Eng. 17, 075009 (2009).CrossRefGoogle Scholar
Tang, Y. and El-Awady, J.A., Acta Mater. 71, 319 (2014).CrossRefGoogle Scholar
Agnew, S.R. and Duygulu, Ö., Int. J. Plast. 21, 1161 (2005).CrossRefGoogle Scholar
Zhang, J. and Joshi, S.P., J. Mech. Phys. Solids 60, 945 (2012).CrossRefGoogle Scholar
Tang, Y. and El-Awady, J.A., Mater. Sci. Eng. A 618, 424 (2014).CrossRefGoogle Scholar
Song, H.-y. and Li, Y.-l., Phys. Lett. A 376, 529 (2012).CrossRefGoogle Scholar
Wang, J., Beyerlein, I.J. and Tomé, C.N., Int. J. Plast. 56, 156 (2014).CrossRefGoogle Scholar
Serra, A. and Bacon, D.J., Phil. Mag. A 73, 333 (1996).CrossRefGoogle Scholar
Yuasa, M., Masunaga, K., Mabuchi, M. and Chino, Y., Phil. Mag. 94, 285 (2013).CrossRefGoogle Scholar
Fan, H., El-Awady, J.A. and Wang, Q., J. Nucl. Mater. 458, 176 (2015).CrossRefGoogle Scholar
Yoo, M.H. and Wei, C.-T., Phil. Mag. 14, 573 (1966).Google Scholar
Tomsett, D.I. and Bevis, M., Phil. Mag. 19, 533 (1969).CrossRefGoogle Scholar