Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:51:11.009Z Has data issue: false hasContentIssue false

Directed Polymers in Restricted Geometries

Published online by Cambridge University Press:  15 February 2011

G. Zumofens
Affiliation:
Physical Chemistry Laboratory, ETH-Zentrum, CH-8092 Zürich, Switzerland
J. Klafter
Affiliation:
School of Chemistry, Tel-Aviv University, Tel-Aviv, 69978 Israel
A. Blumen
Affiliation:
Theoretical Polymer Physics, University of Freiburg, W-7800 Freiburg, Germany
Get access

Abstract

We study numerically directed polymers in random potential fields for one-dimensional and fractal substrates. For fractal substrates the time evolution of the mean transverse fluctuations depends besides on the randomness of the potential also on the fractal nature of the substrate. The two effects enter in a subordinated way, i.e. the corresponding characteristic exponents due to the potential and the substrate combine multiplicatively. For a one-dimensional substrate the propagator P(x, t), the probability distribution of the transverse displacement x(t), follows the scaling form P(x, t) ∼ 〈x2(t)〉-1/2f (ξ), where ξ is the scaling variable ξ = x/〈x2(t)〉1/2. The numerical results support the scaling function f (ξ) ∼ exp (-cξδ) with δ > 2 which indicates an “enhanced” Gaussian behavior. These results are compared with those of a related “toy model”.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kardar, M. and Zhang, Y.C., Phys. Rev. Lett. 58, 2087 (1987).Google Scholar
2. Amar, J.C. and Family, F., Phys. Rev. A 41, 3399 (1990).Google Scholar
3. Huse, D.A. and Henley, C.L., Phys. Rev. Lett. 54, 2708 (1985).Google Scholar
4. Medina, E., Hwa, T., Kardar, M., and Zhang, Y.C., Phys. Rev. A 39, 3053 (1989).Google Scholar
5. Derrida, B. and Spohn, H., J. Stat. Phys. 51, 817 (1988).Google Scholar
6. Mézard, M., J. Phys. France 51, 1831 (1990).Google Scholar
7. Bovier, A., Fr~hlich, J., and Glaus, U., Phys. Rev. B 34, 6409 (1986).Google Scholar
8. Kim, J.M., Bray, A.J., and Moore, M.A., Phys. Rev. A 44, R4782 (1991).Google Scholar
9. Kardar, M., Phys. Rev. Lett. 55, 2923 (1985).Google Scholar
10. McKane, A.J. and Moore, M.A., Phys. Rev. Lett. 60, 527 (1988).Google Scholar
11. Wolf, D.E. and Kertesz, J., Europhys. Lett. 4, 651 (1987).Google Scholar
12. Kim, J.M. and Kosterlitz, J.M., Phys. Rev. Lett. 62, 2289 (1989).Google Scholar
13. Halpin-Healy, T., Phys. Rev. A 44, R3415 (1991).Google Scholar
14. Klafter, J., Zumofen, G., and Blumen, A., Phys. Rev. A 45, R6962 (1992).Google Scholar
15. Zumofen, G., Klafter, J., and Blumen, A., Phys. Rev. A 45, 7624(1992).Google Scholar
16. Havlin, S. and Ben-Avraham, D., Adv. Phys. 36, 695 (1987).Google Scholar
17. Blumen, A., Klafter, J., and Zumofen, G., in “Optical Spectroscopy of Glasses”, ed. Zschokke, I. (Reidel, Dordrecht, 1986), p. 199.Google Scholar
18. Mandelbrot, B., “The Fractal Geometry in Nature” (Freeman, San Francisco, 1982).Google Scholar
19. Blumen, A., Klafter, J., White, B.S., and Zumofen, G., Phys. Rev. Lett. 53, 1301 (1984).Google Scholar
20. Parisi, G., J. Phys. France 51, 1595 (1990).Google Scholar
21. Bouchaud, J.P. and Orland, H., J. Stat. Phys. 61, 877 (1990)Google Scholar
22. Villain, J., Semeria, B., Lanon, F., and Billard, L., J. Phys. C 16, 61553 (1983).Google Scholar
23. Kardar, M., Parisi, G., and Zhang, Y.C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
24. Krug, J., Meakin, P., and Halpin-Healy, T., Phys. Rev. A 45, 638 (1992).Google Scholar
25. Zumofen, G., Klafter, J., and Blumen, A., J. Stat. Phys. 65, 991 (1991).Google Scholar
26. Klafter, J., Zumofen, G., and Blumen, A., J. Phys. A 24, 4835 (1991).Google Scholar
27. Fisher, M.E., J. Chem. Phys. 44, 616 (1966).Google Scholar