Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:58:53.920Z Has data issue: false hasContentIssue false

Direct Measurement of Dislocation Exhaustion Rates During Plastic Deformation of Ni3Al Compounds

Published online by Cambridge University Press:  10 February 2011

B. Matterstock
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland)
J. L. Martin
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland)
J. Bonneville
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland)
T. Kruml
Affiliation:
Institute of Physics of Materials, Zizkova 22, 616 62 Brno (Czech Republic)
Get access

Abstract

Two methods of repeated transients (stress relaxation and creep) which can be performed during straining at a constant strain rate are recalled together with the way the results are interpreted. The repeated creep method has been adapted to Ni3A1 compounds for which the amount of creep strain during the second creep could not be detected so far. Because of a small stress increase between creeps, it is possible to measure microscopic activation volumes, dislocation exhaustion rates and strain hardening coefficients. Results in Ni3A1 polycrystals and Ni3(AI,Hf) single crystals are presented. Orders of magnitude of dislocation exhaustion rates are given. They are particularly high in Ni3A1 as compared with other materials. They compare well with the work hardening coefficient and with total dislocation densities measured by electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Splitig, P., Bonneville, J. and Martin, J.L., Mat. Sci. Eng., A 167 (1993) 75.Google Scholar
2. Orlova, A., Bonneville, J. and Spditig, P, Mat. Sci. Eng., A 191 (1995) 85.CrossRefGoogle Scholar
3. Bonneville, J., Viguier, B. and Spitig, P., Scripta Mater., 36 (1997) 275.CrossRefGoogle Scholar
4. Viguier, B., Bonneville, J., Sphtig, P. and Martin, J.L., in High Temperature Ordered Intermetallic Alloys, edited by C.C. Koch, C.T. Liu, N.S. Stoloff, A. Wanner (Mat. Res. Soc. Symp. Proc. 360, Pittsburgh, PA, 1997) pp. 263268.Google Scholar
5. Saada, G., Bonneville, J. and Spätig, P., Mat. Sci. Eng., A234–236 (1997) 263.CrossRefGoogle Scholar
6. Matterstock, B., Saada, G., Bonneville, J. and Martin, J.L., this conferenceGoogle Scholar
7. Stoiber, J., Bonneville, J. and Martin, J.L., in Strength of Metals and Alloys, edited by Kettunen, P.O., Lepistd, T.K., Lehtonen, M.E., (Pergamon 1, Oxford, 1989) pp. 457462.CrossRefGoogle Scholar
8. Splitig, P., Doctorate thesis n° 1407, Lausanne (1995).Google Scholar
9. Bonneville, J., Martin, J.L., Spätig, P., Viguier, B. and Matterstock, B., in High Temperature Ordered Intermetallic Alloys, Ibidem pp. 419424.Google Scholar
10. Viguier, B., Bonneville, J. and Martin, J.L., Acta Mater., 44 (1996) 4403.CrossRefGoogle Scholar
11. Bonneville, J. and Lecerf, P., to be published.Google Scholar
12. Kruml, T., to be published.Google Scholar
13. Hemker, K.J., Mills, M.J. and Nix, W.D., J. Mater. Res., 7 (1992) 2059.CrossRefGoogle Scholar
14. Chrzan, D.C. and Mills, M.J., in Dislocation in Solids, edited by Nabarro, F.R.N. and Duesberry, M.S. (Elsevier Science 10, Amsterdam, 1996) pp. 187252.Google Scholar