Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T18:44:59.307Z Has data issue: false hasContentIssue false

Direct gap Group IV semiconductors for next generation Si-based IR photonics

Published online by Cambridge University Press:  07 July 2014

John Kouvetakis
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85207, U.S.A.
James Gallagher
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85207, U.S.A.
José Menéndez
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85207, U.S.A.
Get access

Abstract

This paper presents synthesis and optical properties of mono-crystalline Ge1-ySny and Ge1-x-ySixSny semiconductor alloys grown on Si/Ge platforms via purposely designed CVD routes using highly reactive Si/Ge/Sn hydrides including Ge3H8, Ge4H10, Si4H10 and SnD4. The Ge1-ySny materials are shown to exhibit strong and tunable photoluminescence induced by the substitution of sizable Sn concentrations in the Ge diamond lattice ultimately leading to an indirect-to-direct band gap crossover at y= 0.08-0.09. The optical data indicate that the IR coverage of the alloy extends well beyond that of elemental Ge into the broader long wavelength range suggesting a variety of applications in Si-based photonics. Ge1-x-ySixSny alloys represent the first viable ternary semiconductor among group IV elements with independently tunable lattice parameter and electronic structure. Studies of the compositional dependence of direct and indirect edges in these alloys using photoluminescence and photocurrent measurements are reviewed. The optical results show band gap variation over a wide range above and below that of Ge from 1.1 to 0.5 eV and provide the first demonstration of direct gap behavior in this semiconductor system.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Farrow, R. F. C., Robertson, D. S., Williams, G. M., Cullis, A. G., Jones, G. R., Young, I. M., and Dennis, M. J., J. Cryst. Growth 54, 507 (1981).CrossRefGoogle Scholar
Goodman, C. H. L., Solid State and Electronic Devices, IEE Proceedings I 129(5), 189 (1982).Google Scholar
Goodman, C. H. L., Jap. J. of Appl. Phys. Supplement 22-1 22 (Supplement 22-1), 583 (1982).CrossRefGoogle Scholar
Groves, S. and Paul, W., Phys. Rev. Lett. 11, 194 (1963).CrossRefGoogle Scholar
Temkin, R. J., Connell, G. A. N., and Paul, W., Solid State Commun. 11(11), 1591 (1972).CrossRefGoogle Scholar
Jenkins, D. W. and Dow, J. D., Phys. Rev. B 36(15), 7994 (1987).CrossRefGoogle Scholar
Mäder, K. A., Baldereschi, A., and von Kanel, H., Solid State Commun. 69(12), 1123 (1989).CrossRefGoogle Scholar
Kasper, E., Werner, J., Oehme, M., Escoubas, S., Burle, N., and Schulze, J., Thin Solid Films 520(8), 3195 (2012).CrossRefGoogle Scholar
Paul, D. J., Semicond. Sci. Technol. 19(10), R75 (2004).CrossRefGoogle Scholar
Shah, S. I., Greene, J. E., Abels, L. L., Yao, Q., and Raccah, P. M., J. Cryst. Growth 83, 3 (1987).CrossRefGoogle Scholar
Pukite, P. R., Harwit, A., and Iyer, S. S., Appl. Phys. Lett. 54(21), 2142 (1989).Google Scholar
He, G. and Atwater, H. A., Appl. Phys. Lett. 68(5), 664 (1996).CrossRefGoogle Scholar
He, G. and Atwater, H. A., Phys. Rev. Lett. 79(10), 1937 (1997).CrossRefGoogle Scholar
D'Costa, V. R., Cook, C. S., Birdwell, A. G., Littler, C. L., Canonico, M., Zollner, S., Kouvetakis, J., and Menendez, J., Phys. Rev. B 73(12), 125207 (2006).CrossRefGoogle Scholar
D'Costa, V. R., Tolle, J., Roucka, R., Poweleit, C. D., Kouvetakis, J., and Menendez, J., Solid State Commun. 144 (5-6), 240 (2007).CrossRefGoogle Scholar
Roucka, R., Fang, Y. Y., Kouvetakis, J., Chizmeshya, A. V. G., and Menéndez, J., Phys. Rev. B 81(24), 245214 (2010).CrossRefGoogle Scholar
Beeler, R., Roucka, R., Chizmeshya, A., Kouvetakis, J., and Menéndez, J., Phys. Rev. B 84(3), 035204 (2011).CrossRefGoogle Scholar
D'Costa, V. R., Fang, Y., Mathews, J., Roucka, R., Tolle, J., Menendez, J., and Kouvetakis, J., Semicond. Sci. Technol. 24(11), 115006 (2009).CrossRefGoogle Scholar
Chizmeshya, A. V. G., Ritter, C., Tolle, J., Cook, C., Menendez, J., and Kouvetakis, J., Chem. Mater . 18(26), 6266 (2006).Google Scholar
Fang, Y. Y., Tolle, J., Chizmeshya, A. V. G., Kouvetakis, J., D'Costa, V. R., and Menendez, J., Appl. Phys. Lett. 95(8), 081113 (2009).CrossRefGoogle Scholar
Xie, J. Q., Tolle, J., D'Costa, V. R., Weng, C., Chizmeshya, A. V. G., Menendez, J., and Kouvetakis, J., Solid-State Electronics 53(8), 816 (2009).Google Scholar
Tice, J. B., Chizmeshya, A. V. G., Tolle, J., D'Costa, V. R., Menendez, J., and Kouvetakis, J., Dalton Transactions 39(19), 4551 (2010).Google Scholar
Mathews, J., Beeler, R. T., Tolle, J., Xu, C., Roucka, R., Kouvetakis, J., and J. Menéndez, Appl. Phys. Lett. 97(22), 221912 (2010).Google Scholar
Mathews, J., Roucka, R., Xie, J. Q., Yu, S. Q., Menendez, J., and Kouvetakis, J., Appl. Phys. Lett. 95(13), 133506 (2009).CrossRefGoogle Scholar
Roucka, R., Mathews, J., Weng, C., Beeler, R., Tolle, J., Menendez, J., and Kouvetakis, J., IEEE J. Quant. Electron. 47(2), 213 (2011).Google Scholar
Roucka, R., Beeler, R., Mathews, J., Ryu, M.-Y., Kee Yeo, Y., Menéndez, J., and Kouvetakis, J., J. Appl. Phys. 109(10), 103115 (2011).Google Scholar
Roucka, R., Mathews, J., Beeler, R. T., Tolle, J., Kouvetakis, J., and J. Menéndez, Appl. Phys. Lett. 98(6), 061109 (2011).Google Scholar
Bauer, M., Ritter, C., Crozier, P. A., Ren, J., Menéndez, J., Wolf, G., and Kouvetakis, J., Appl. Phys. Lett. 83(11), 2163 (2003).CrossRefGoogle Scholar
Fang, Y.-Y., Xie, J., Tolle, J., Roucka, R., D'Costa, V. R., Chizmeshya, A. V. G., Menendez, J, and Kouvetakis, J., J. Am. Chem. Soc. 130(47), 16095 (2008).CrossRefGoogle Scholar
Xie, J., Chizmeshya, A. V. G., Tolle, J., D'Costa, V. R., Menendez, J., and Kouvetakis, J., Chemistry of Materials 22(12), 3779 (2010).Google Scholar
D'Costa, V. R., Fang, Y. Y., Tolle, J., Kouvetakis, J., and Menéndez, J., Thin Solid Films 518(9), 2531 (2010).CrossRefGoogle Scholar
D'Costa, V. R., Fang, Y. Y., Tolle, J., Kouvetakis, J., and Menendez, J., Phys. Rev. Lett. 102(10), 107403 (2009).CrossRefGoogle Scholar
Roucka, R., Tolle, J., Cook, C., Chizmeshya, A. V. G., Kouvetakis, J., D'Costa, V., Menendez, J., Chen, Z. D., and Zollner, S., Appl. Phys. Lett. 86(19), 191912 (2005).CrossRefGoogle Scholar
Tolle, J., Roucka, R., Chizmeshya, A. V. G., Kouvetakis, J., D'Costa, V. R., and Menendez, J., Appl. Phys. Lett. 88(25), 252112 (2006).Google Scholar
Menendez, J. and Kouvetakis, J., Appl. Phys. Lett. 85(7), 1175 (2004).CrossRefGoogle Scholar
Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C., and Michel, J., Opt. Lett. 35(5), 679 (2010).CrossRefGoogle Scholar
Friedman, D. J., Kurtz, S. R., and , J. F. Geisz, presented at the Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, 2002 (unpublished).Google Scholar
Sun, G., Cheng, H. H., Menendez, J., Khurgin, J. B., and Soref, R. A., Appl. Phys. Lett. 90(25), 251105 (2007).CrossRefGoogle Scholar
Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho, A. Y., Science 264 (22 April 1994), 553 (1994).CrossRefGoogle Scholar
Wang, W., Su, S.-J., Zheng, J., Zhang, G.-Z., Zuo, Y.-H., Cheng, B.-W., and Wang, Q.-M., Chinese Physics B 20(6), 068103 (2011).Google Scholar
Takeuchi, S., Shimura, Y., Nishimura, T., Vincent, B., Eneman, G., Clarysse, T., Demeulemeester, J., Vantomme, A., Dekoster, J., Caymax, M., Loo, R., Sakai, A., Nakatsuka, O., and Zaima, S., Solid-State Electronics 60(1), 53 (2011).CrossRefGoogle Scholar
Su, S., Cheng, B., Xue, C., Wang, W., Cao, Q., Xue, H., Hu, W., Zhang, G., Zuo, Y., and Wang, Q., Opt. Express 19(7), 6400 (2011).CrossRefGoogle Scholar
Lin, H., Chen, R., Lu, W., Huo, Y., Kamins, T. I., and Harris, J. S., Appl. Phys. Lett. 100(10), 102109 (2012).CrossRefGoogle Scholar
Bhatia, A., Hlaing, W. M., Siegel, G., Stone, P. R., Yu, K. M., and Scarpulla, M. A., J. Elec. Mat. 41(5), 837 (2012).Google Scholar
Stefanov, S., Conde, J. C., Benedetti, A., Serra, C., Werner, J., Oehme, M., Schulze, J., Buca, D., Holländer, B., Mantl, S., and Chiussi, S., Appl. Phys. Lett. 100(10), 104101 (2012).Google Scholar
Yin, W.-J., Gong, X.-G., and Wei, S.-H., Phys. Rev. B 78(16), 161203 (2008).CrossRefGoogle Scholar
Grzybowski, G., Roucka, R., Mathews, J., Jiang, L., Beeler, R., Kouvetakis, J., and Menéndez, J., Phys. Rev. B 84(20), 205307 (2011).CrossRefGoogle Scholar
Xu, C., Beeler, R.T. Grzybowski, G., Chizmeshya, A.V.G Menendez, J. and Kouvetakis, J. J. Am. Chem. Soc. 134(51), 2075620767 (2012)CrossRefGoogle Scholar
Grzybowski, G., Jiang, L., Beeler, R. T., Watkins, T., Chizmeshya, A. V. G., Xu, C., Menéndez, J., and Kouvetakis, J., Chemistry of Materials 24(9), 1619 (2012).Google Scholar
Xu, C., Beeler, R.T., Jiang, L., Chizmeshya, A.V.G Menendez, J. and Kouvetakis, J., Semicond. Sci. Technol. 28, 105001 (2013).CrossRefGoogle Scholar
Gallagher, J.D., Xu, C., Jiang, L., Kouvetakis, J., and Menéndez, J., Appl. Phys. Lett. 103, 202104 (2013).CrossRefGoogle Scholar