Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:03:17.497Z Has data issue: false hasContentIssue false

Direct Electronic Control of Biomolecular Systems: Using Nanocrystals as Antennas for Regulation of Biological Activity

Published online by Cambridge University Press:  21 March 2011

Kimberly Hamad-Schifferli
Affiliation:
The Media Lab and the Massachusetts Institute of Technology, Cambridge, MA 02139, U. S.A.
John J. Schwartz
Affiliation:
Engeneos, Cambridge, MA 02140, U. S. A.
Aaron T. Santos
Affiliation:
The Media Lab and the Massachusetts Institute of Technology, Cambridge, MA 02139, U. S.A.
Shuguang Zhang
Affiliation:
Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U. S.A.
Joseph M. Jacobson
Affiliation:
The Media Lab and the Massachusetts Institute of Technology, Cambridge, MA 02139, U. S.A.
Get access

Abstract

We report a means of directly controlling DNA dehybridization by radio frequency magnetic field coupling to a nanometer scale antenna covalently linked to the DNA. The method of control relies on induction heating of an Au nanocrystal, which raises the temperature of a biomolecule to which it is covalently bound, while leaving surrounding molecules relatively unaffected. Because heat dissipation in biomolecules in solution is rapid(<50 picoseconds[1]) this switching is reversible. This technique is specific, reversible, and non-optical. Since it can be used in solution, it has the potential to be extended to systems in vivo. The ability to differentially control local temperature forms the basis of control of properties such as hybridization and enzyme activity, and has the potential of controlling many biological processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lian, T., Locke, B., Kholodenko, Y., and Hochstrasser, R. M., J. Phys. Chem., vol. 98, pp. 1164811656, 1994.Google Scholar
2. Orfeuil, M., Electric Process Heating: Technologies/ Equipment/Applications. Columbus, Ohio: Battelle Press, 1987.Google Scholar
3. Bonnet, G., Tyagi, S., Libchaber, A., and Kramer, F. R., Proc. Natl. Acad. Sci. USA, vol. 96, pp. 61716176, 1999.Google Scholar
4. Hermanson, G. T., Bioconjugate Techniques: Academic Press, 1996.Google Scholar
5. Taton, A. T., Mirkin, C. A., and Letsinger, R. L., Science, vol. 289, pp. 17571760, 2000.Google Scholar
6. Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P., and Schultz, P. G., Angew. Chem Int. Ed. Engl., vol. 38, 1999.Google Scholar
7. Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., and Bawendi, M. G., J. Am. Chem. Soc., vol. 122, pp. 1214212150, 2000.Google Scholar
8. Zanchet, D., Micheel, C. M., Parak, W. J., Gerion, D., and Alivisatos, A. P., Nanoletters, vol. 1, pp. 3235, 2001.Google Scholar
9. Bonnet, G., Krichevsky, O., and Libchaber, A., Proc. Natl. Acad. Sci. USA, vol. 95, pp. 86028606, 1998.Google Scholar
10. Yurke, B., Turberfield, A. J., Mills, J., Allen, P., Simmel, F. C., and Neumann, J. L., Nature, vol. 406, pp. 605608, 2000.Google Scholar
11. Mao, C., LaBean, T. H., Reif, J. H., and Seeman, N. C., Nature, vol. 407, pp. 493496, 2000.Google Scholar
12. Elowitz, M. B. and Leibler, S., Nature, vol. 403, pp. 335338, 2000.Google Scholar
13. Gardner, T. S., Cantor, C. R., and Collins, J. J., Nature, vol. 403, pp. 339342, 2000.Google Scholar
14. Zhang, S., Shi, J., Jura, M., Hamad-Schifferli, K., Schwartz, J. J., and Jacobson, J. M., in preparation, 2001.Google Scholar
15. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., and Belcher, A. M., Nature, vol. 405, pp. 665668, 2000.Google Scholar