Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:48:09.008Z Has data issue: false hasContentIssue false

Diffusion of Ion Implanted Ruthenium and Osmium IN GaAs and InP

Published online by Cambridge University Press:  22 February 2011

M. Kuttler
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
A. Knecht
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
D. Bimberg
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
H. Kräutle
Affiliation:
Telekom FTZ, Am Kavalleriesand 3, 64259 Darmstadt, Germany
Get access

Abstract

The redistribution of the dopants Ru and Os implanted into GaAs and InP as well as the structural properties of the hosts are investigated in dependence of the annealing procedure. Results of Rutherford backscattering and secondary-ion-mass-spectroscopy experiments are presented. The RBS results of Os in GaAs annealed at 850°C indicate that an amount of about 1018 cm-3 Os is on substitutional sites. Two different diffusion processes are observed: an uphill diffusion in the amorphized region and a Fick-type diffusion in the tail of the depth profiles. The diffusion coefficients for Ru in GaAs at 850°C and Os in InP at 750°C are estimated to 4*10-14 cm2s-1 and 8*10-15 cm2s-1, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Clerjaud, B., J. Phys. C: Solid State Phys. 18, 3615 (1985).Google Scholar
2 Donnelly, J.P. and Hurwitz, C.E., Solid-State Electron. 21, 475 (1978).Google Scholar
3 Ullrich, H., Knecht, A., Bimberg, D., Kräutle, H. and Schlaak, W., J. Appl. Phys. 70, 2604 (1991).Google Scholar
4 Kütt, W., Bimberg, D., Maier, M., Kräutle, H., Köhl, F., and Bauser, E., Appl. Phys. Lett. 44, 1078 (1984).Google Scholar
5 Bremond, G., Nouailhat, A., Guillot, G., Toudic, Y., Lambert, B., Gauneau, M., Coquille, R. and Deveaud, B., Semicond. Sci. Technol. 2, 772 (1987).Google Scholar
6 Knecht, A., Kuttler, M., Scheffler, H., Wolf, T., Bimberg, D., and Kräutle, H., Nucl. Instr. and Meth. in Phys. Res. B80/81, 683 (1992).Google Scholar
7 Scheffler, H., presented at the 1993 MRS Fall Meeting, Boston, 1993 (unpublished).Google Scholar
8 Biersack, J.P. and Haggmark, L.G., Nucl. Instr. and Meth. in Phys. Rers. 174, 257 (1980).Google Scholar
9 Taniwaki, M., Koide, H., Yoshimoto, N., Yoshiie, T., Ohnuki, S., Maeda, M. and Sassa, K., J. Appl. Phys. 67, 4036 (1990).Google Scholar
10 Bahir, G., Merz, J.L., Abelson, J.R. and Sigmon, T.W., Inst. Phys. Conf. Ser. 83, 283 (1986).Google Scholar
11 Robinson, H.G., Deal, M.D., and Stevenson, D.A., Mat. Res. Soc. Symp. Proc. Vol. 163, 653 (1990).Google Scholar
12 Robinson, H.G., Deal, M.D., and Stevenson, D.A., Appl. Phys. Lett. 58, 487 (1991).Google Scholar
13 Tuck, B., Atomic Diffusion in III-V Semiconductors (Adam Hilger, Bristol and Philadelphia, 1988).Google Scholar
14 Ullrich, H., Knecht, A., Bimberg, D., Kräutle, H. and Schlaak, W., J. Appl. Phys. 72, 3514 (1992).Google Scholar
15 Boltaks, B.I., Kulikov, G.S., Nikolitsa, I.N., Shishiyanu, F.S., Inorg. Mater. (USSR) 11, 292 (1975).Google Scholar
16 Weber, E.R., Appl. Phys. Lett. 44, 1078 (1984).Google Scholar
17 Robinson, H.G., Deal, M.D., and Stevenson, D.A., Appl. Phys. Lett. 56, 554 (1990).Google Scholar
18 Yan, Z.Y. and Milnes, A.G., J. Electrochem. Soc. Vol. 129, 1353 (1982).Google Scholar