Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:45:52.608Z Has data issue: false hasContentIssue false

Diffusion Barriers for Copper Metallization: Predicting Phase Stability and Reactivity using Equilibrium Thermodynamics

Published online by Cambridge University Press:  10 February 2011

C. E. Ramberg
Affiliation:
LTPCM-ENSEEG - BP 75 - 38402 St. Martin d'Hères, (France)
E. Blanquet
Affiliation:
LTPCM-ENSEEG - BP 75 - 38402 St. Martin d'Hères, (France)
M. Pons
Affiliation:
LTPCM-ENSEEG - BP 75 - 38402 St. Martin d'Hères, (France)
V. Ghetta
Affiliation:
LTPCM-ENSEEG - BP 75 - 38402 St. Martin d'Hères, (France)
C. Bernard
Affiliation:
LTPCM-ENSEEG - BP 75 - 38402 St. Martin d'Hères, (France)
R. Madar
Affiliation:
LMGP-ENSPG - BP 46 - 38402 St. Martin d'Hères, (France)
Get access

Abstract

The guidelines for designing a conductive, amorphous material, capable of thermodynamic equilibrium with copper, are defined using readily available thermodynamic information. The tradeoff between desired properties – equilibrium at the interfaces, amorphous microstructure, and electronic conductivity – are described, along with trends in relevant binary systems that result in these properties. These guidelines defined systems for experimental study, for which preliminary results are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Harper, J. M. E., Colgan, E. G., Hu, C.-K., Hummel, J. P., Buchwalter, L. P., Uzoh, C. E., MRS Bulletin, 2329 August (1994).10.1557/S0883769400047709Google Scholar
2 Wang, S. Q., MRS Bulletin, 3040 August (1994).10.1557/S0883769400047710Google Scholar
3 Kolowa, E., Molarius, J. M., Nieh, C. W., Nicolet, M.-A., J. Vac. Sci. Tech. A 8, 3006 (1990).10.1116/1.576620Google Scholar
4 Nicolet, M.-A., App. Surf. Sci. 91 269276 (1995) and references therein.10.1016/0169-4332(95)00130-1Google Scholar
5 Scientific Group Thermodata Europe, LTPCM, 1130 rue de la Piscine, 38402 Saint Martin d'Hères, France.Google Scholar
6 COST 507 Thermochemical Database for Light Metal Alloys, Vol. 2, Ansara, I., Dinsdale, A. T., Rand, M. H., Eds. EUR 18499 EN (1998).Google Scholar
7 Thermo-Calc, , Royal Institute of Technology, S, 10044, Stockholm, Sweden.Google Scholar
8 Ramberg, C E., Blanquet, E., Pons, M., Bernard, C., Madar, R., Microelectronics Engineering, Proceedings from the European Workshop Materials for Advanced Metallization, March 8–10, Oostende. Belgium (1999).Google Scholar
9 Reid, J. S, Kolawa, E., Nicolet, M. - A., J. Mater. Res., 7 [9] 24242428 (1992).10.1557/JMR.1992.2424Google Scholar
10 Choi, C. S., Ruggles, G. A., Shah, A. S., Xing, G. C., Osburn, C. M., Hunn, J. D., J. Electrochem. Soc. 138 [10] 30623067 (1991).10.1149/1.2085367Google Scholar
11 Paulasto, M., Kivilahti, J. K., van Loo, F.J.J, J. App. Phys. 77 [9] 44124416 (1995).10.1063/1.359468Google Scholar
12 Ward, W. J. and Carroll, K. M., J. Electrochem. Soc. 129 [11227–229 (1982).Google Scholar
13 Cros, A., Aboelfotoh, M. O., Tu, K. N., J. App. Phys. 67 [7] 33283336 (1990).10.1063/1.345369Google Scholar
14 Stolt, L., Charai, A., d'Heurle, F. M., Fryer, P.M., Harper, J. M. E., J. Vac. Sci. Tech., A9, 1501 (1991)10.1116/1.577653Google Scholar
15 Kramer, J., Ann. Phys. (Paris) 19 37 (1934).10.1002/andp.19344110104Google Scholar
16 Brenner, A., Couch, D. E., Williams, E. K., J. Res. Natl. Bur. Stand., 44 109 (1950).10.6028/jres.044.009Google Scholar
17 Suryanarayana, C., A Bibliography 1973–1979 for Rapidly Quenched Metals (Plenum, New York, 1980).Google Scholar
18 Klement, W., Willens, R. H., Duwez, P., Nature, 187, 869 (1960).10.1038/187869b0Google Scholar
19 Inoue, A., Zhang, T., Masumoto, T., Mater. Trans., JIM, 30, 965 (1989).10.2320/matertrans1989.30.965Google Scholar
20 Johnson, W. L., Mat. Sci. Forum. 225–227, 3550 (1996).10.4028/www.scientific.net/MSF.225-227.35Google Scholar
21 Egami, T., Mat. Sci. & Eng. A226–228, 261267 (1997).10.1016/S0921-5093(97)80041-XGoogle Scholar
22 Inoue, A., Takeuchi, A., Zhang, T., « Ferromagnetic Bulk Amorphous Alloys, » Met. And Mat. Trans. A, 29A, 17791793 (1998).10.1007/s11661-998-0001-9Google Scholar
23 Ball, R. K., Freeman, W. G., Taylor, A. J., Todd, A. G., J. Mat. Sci, 21 40294034 (1986).10.1007/BF02431647Google Scholar
24 Wang, M. T., Lin, Y. C., Lee, J. Y., Wang, C. C., Chen, M. C., J. Electrochem. Soc., 145 [12] 42064210 (1998).10.1149/1.1838938Google Scholar
25 Kolawa, E., Sun, X., Reid, J. S., Chen, J. S., Nicolet, M.-A., Ruiz, R., Thin Solid Films, 236, 301305 (1993).10.1016/0040-6090(93)90686-JGoogle Scholar
26 Reid, J. S., Sun, X., Kolawa, E., Nicolet, M.-A., IEEE Electron. Device Letters, 15 [8] 298300 (1994).10.1109/55.296222Google Scholar
27 Blanquet, E., Dutron, A.M., Ghetta, V., Bernard, C., Madar, R., Microelec. Eng., 37/38 189195 (1997).10.1016/S0167-9317(97)00111-1Google Scholar