Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:26:44.905Z Has data issue: false hasContentIssue false

Diffusion and Ionic Conduction in Nanocrystalline Ceramics

Published online by Cambridge University Press:  21 March 2011

Paul Heitjans
Affiliation:
Institut für Physikalische Chemie und Elektrochemie, Universität Hannover, 30167 Hannover, Germany
Sylvio Indris
Affiliation:
Institut für Physikalische Chemie und Elektrochemie, Universität Hannover, 30167 Hannover, Germany
Get access

Abstract

Diffusion and ionic conduction in nanocrystalline ceramics, both monophase and composite, was studied by NMR relaxation and NMR lineshape as well as impedance spectroscopy. Measurements were mainly done on Li ion conductors prepared by high-energy ball milling. It was possible to discriminate between mobile ions in the interfacial regions and immobile ions in the grains. In general the diffusivity and conductivity are enhanced in the nanocrystalline monophase system as compared to the microcrystalline one, e. g. by about four orders of magnitude in the case of CaF2. An exception is, e. g., Li2O where the nano- and microcrystalline forms have similar conductivities. However, when the nanocrystalline insulator B2O3 is added to nanocrystalline Li2O the conductivity of the composite increases whereas it decreases in the corresponding microcrystalline system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gleiter, H., Progr. Mater. Science 33, 223 (1989).Google Scholar
[2] Siegel, R. W., in Encyclopedia of Applied Physics, Vol. 11, edited by Trigg, G. L., Immergut, E. H., Vera, E. S., Greulich, W. (VCH, New York, 1994) p. 173.Google Scholar
[3] Tuller, H. L., J. Electroceramics 1, 211 (1997).Google Scholar
[4] Ying, J. Y. and Sun, T., J. Electroceramics 1, 219 (1997).Google Scholar
[5] Heitjans, P. and Schirmer, A., in Diffusion in Condensed Matter, edited by Kärger, J., Heitjans, P., Haberlandt, R. (Springer, Berlin, 1998) p. 116.Google Scholar
[6] Puin, W., Heitjans, P., Dickenscheid, W., and Gleiter, H., in Defects in Insulating Materials, edited by Kanert, O., Spaeth, J. (World Scientific, Singapore, 1993) p. 137.Google Scholar
[7] Puin, W. and Heitjans, P., Nanostruct. Mater. 6, 885 (1995).Google Scholar
[8] Puin, W., Rodewald, S., Ramlau, R., Heitjans, P., and Maier, J., Solid State Ionics 131, 159 (2000).Google Scholar
[9] Bork, D. and Heitjans, P., J. Phys. Chem. B 102, 7303 (1998).Google Scholar
[10] Bork, D. and Heitjans, P., J. Phys. Chem. B 105, 9162 (2001).Google Scholar
[11] Winter, R. and Heitjans, P., Nanostruct. Mater. 12, 883 (1999).Google Scholar
[12] Winter, R. and Heitjans, P., J. Phys. Chem. B 105, 6108 (2001).Google Scholar
[13] Winter, R. and Heitjans, P., J. Non-Cryst. Solids 293–295, 19 (2001).Google Scholar
[14] Rüscher, C. H., Tobschall, E., and Heitjans, P., in Applied Mineralogy, edited by Rammlmair, D., Mederer, J., Oberthür, Th., Heimann, R. B., Pentinghaus, H. (A. A. Balkema Publishers, Rotterdam, 2000) p. 221.Google Scholar
[15] Indris, S. and Heitjans, P., Mater. Sci. Forum 343–346, 417 (2000).Google Scholar
[16] Indris, S., Heitjans, P., Roman, H. E., and Bunde, A., Phys. Rev. Lett. 84, 2889 (2000).Google Scholar
[17] Indris, S., Heitjans, P., Roman, H. E., and Bunde, A., Defect and Diffusion Forum 194–199, 935 (2001).Google Scholar
[18] Indris, S., Bork, D., and Heitjans, P., J. Mater. Synth. Process. 8, 245 (2001).Google Scholar
[19] Impedance Spectroscopy, edited by McDonald, J. R. (John Wiley & Sons, New York, 1983).Google Scholar
[17] Indris, S., Heitjans, P., Roman, H. E., and Bunde, A., Defect and Diffusion Forum 194–199, 935 (2001).Google Scholar
[18] Indris, S., Bork, D., and Heitjans, P., J. Mater. Synth. Process. 8, 245 (2001).Google Scholar
[19] Impedance Spectroscopy, edited by McDonald, J. R. (John Wiley & Sons, New York, 1983).Google Scholar
[20] Fukushima, E. and Roeder, S. B. W., Experimental Pulse NMR, (Addison-Wesley, Reading (Mass.), 1981).Google Scholar
[21] Heitjans, P., Körblein, A., Ackermann, H., Dubbers, D., Fujara, F., and Stöckmann, H. -J., J. Phys. F: Met. Phys. 15, 41 (1985).Google Scholar
[22] Bunde, A., Maass, P., and Meyer, M., in Diffusion in Condensed Matter, edited by Kärger, J., Heitjans, P., Haberlandt, R. (Springer, Berlin, 1998) p. 319.Google Scholar
[23] Rhim, W. -K., Burum, D. P., and Ellemann, D. D., J. Chem. Phys. 68, 692 (1978).Google Scholar
[24] Bloembergen, N., Purcell, E. M., and Pound, R. V., Phys. Rev. 73, 679 (1948).Google Scholar
[25] Meyer, M., Maass, P., and Bunde, A., Phys. Rev. Lett. 71, 573 (1993).Google Scholar
[26] Küchler, W., Heitjans, P., Payer, A., and Schöllhorn, R., Solid State Ionics 86, 1311 (1996).Google Scholar
[27] Franke, W. and Heitjans, P., Ber. Bunsenges. Phys. Chem. 96, 1674 (1992).Google Scholar
[28] Roman, H. E., J. Phys.: Condensed Matter 2, 3909 (1990).Google Scholar