Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T22:47:43.731Z Has data issue: false hasContentIssue false

Dielectric Recovery of Plasma Damaged Organosilicate Low-k Films

Published online by Cambridge University Press:  01 February 2011

Huai Huang
Affiliation:
[email protected], The University of Texas at Austin, Laboratory for Interconnect and Packaging, Microelectronics Research Center,, the University of Texas at Austin, Austin, TX 78758, Austin, TX, 78758, United States, 512-471-8995, 512-471-8969
Junjing Bao
Affiliation:
[email protected], Microelectronics Research Center, Laboratory for Interconnect and Packaging, Pickle Research Campus, The University of Texas at Austin, Austin, TX, 78758, United States
Huai Huang
Affiliation:
[email protected], Microelectronics Research Center, Laboratory for Interconnect and Packaging, Pickle Research Campus, The University of Texas at Austin, Austin, TX, 78758, United States
Junjun Liu
Affiliation:
[email protected], Microelectronics Research Center, Laboratory for Interconnect and Packaging, Pickle Research Campus, The University of Texas at Austin, Austin, TX, 78758, United States
Ryan Scott Smith
Affiliation:
[email protected], Microelectronics Research Center, Laboratory for Interconnect and Packaging, Pickle Research Campus, The University of Texas at Austin, Austin, TX, 78758, United States
Yangming Sun
Affiliation:
[email protected], Microelectronics Research Center, Laboratory for Interconnect and Packaging, Pickle Research Campus, The University of Texas at Austin, Austin, TX, 78758, United States
Paul S. Ho
Affiliation:
[email protected], Microelectronics Research Center, Laboratory for Interconnect and Packaging, Pickle Research Campus, The University of Texas at Austin, Austin, TX, 78758, United States
Michael L. McSwiney
Affiliation:
[email protected], Intel Corporation, Logic Technology Development, Hillsboro, OR, 97124, United States
Mansour Moinpour
Affiliation:
[email protected], Intel Corporation, Logic Technology Development, Hillsboro, OR, 97124, United States
Grant M Kloster
Affiliation:
[email protected], Intel Corporation, Logic Technology Development, Hillsboro, OR, 97124, United States
Get access

Abstract

Methyl depletion and subsequent moisture uptake have been found to be the primary plasma damages leading to dielectric loss in porous organosilicate (OSG) low-k dielectrics. A vacuum vapor silylation process was developed for dielectric recovery of plasma damaged OSG low-k dielectrics. The methyl or phenyl containing silylation agents were used to convert the hydrophilic -OH groups to hydrophobic groups. Compared with Trimethylchlorosilane (TMCS) and Phenyltrimethoxysilane (PTMOS), Dimethyldichlorosilane (DMDCS) was found to be more effective in recovering surface carbon concentration and surface hydrophobicity. But the carbon recovery effect was limited to the surface region.

Alternatively, UV radiation with thermal activation was applied for dielectric recovery of plasma damaged OSG low-k dielectrics. The combined UV/thermal process was found to be efficient in reducing −OH, physisorbed water, and C=O bonds. The dielectric constant was recovered within 5% of the pristine sample and the leakage current was also much reduced. Aging test in air showed that no moisture retake was observed, indicating the repaired film was stable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morgen, M., Ryan, E. T., Zhao, J., Hu, C., Cho, T., and Ho, P. S., Annu. Rev. Mater. Sci., Vol. 30, 645680 (2000).Google Scholar
2. Maex, K., Baklanov, M. R., Shamiryan, D., Lacopi, F., Brongersma, S. H., and Yanovitskaya, Z. S., J. Appl. Phys., 93, 87938840 (2003).Google Scholar
3. Sun, J., Gidley, D. W., Hu, Y., Frieze, W. E., and Ryan, E. T., Appl. Phys. Lett., 81, 1447 (2002).Google Scholar
4. Moore, D. L., Carter, R. J., Cui, H., Burke, P., Gu, S. Q., Peng, H., Valley, R. S., Gidley, D. W., Waldfried, C., and Escorcia, O., Journal of the Electrochemical Society, 152 (7) G528–G533 (2005).Google Scholar
5. Hua, X., Kuo, M., Oehrlein, G. S., Lazzeri, P., Iacob, E., Anderle, M., Inoki, C. K., Kuan, T. S., Jiang, P., and Wu, W., J. Vac. Sci. Technol. B, 24, 1238 (2006).Google Scholar
6. Lee, H., Soles, C. L., Lin, E. K., Wu, W., and Liu, Y., Appl. Phys. Lett., 91, 172908 (2007).Google Scholar
7. Worsley, M. A., Bent, S. F., Fuller, N. C. M., Tai, T. L., Doyle, J., Rothwell, M., and Dalton, T., J. Appl. Phys., 101, 013305 (2007).Google Scholar
8. Urbanowicz, A. M., Baklanov, M. R., Heijlen, J., Travaly, Y., and Cockburn, A., Electrochemical and Solid-State Letters, 10(10) G76–G79 (2007).Google Scholar
9. Uchida, S., Takashima, S., Hori, M., Fukasawa, M., Ohshima, K., Nagahata, K., and Tatsumi, T., J. Appl. Phys., 103, 073303 (2008).Google Scholar
10. Yin, Y. and Sawin, H. H., J. Vac. Sci. Technol. A 26, 151 (2008).Google Scholar
11. Bao, J., Shi, H., Liu, J., Huang, H., Ho, P. S., Goodner, M. D., Moinpour, M., and Kloster, G. M., J. Vac. Sci. Technol. B, 26, 219 (2008).Google Scholar
12. Rajagopalan, T., Lahlouh, B., Lubguban, J. A., Biswas, N., Gangopadhyay, S., Sun, J., Huang, D. H., Simon, S. L., Toma, D., and Butler, R., Applied Surface Science, 252 (18), 63236331 (2006).Google Scholar
13. Hu, J. C., Wu, C. W., Gau, W. C., Chen, C. P., Chen, L. J., Li, C. H., Chang, T. C., and Chu, C. J., Journal of the Electrochemical Society, Vol. 150 (4) F61–F66 (2003).Google Scholar
14. Clark, P. G., Schwab, B. D., Butterbaugh, J. W., Martinez, H. J., and Wolf, P. J., Semiconductor International August 2003.Google Scholar
15. Orozco-Teran, R. A., Gorman, B. P., Zhang, Z., Mueller, D. W., and Reidy, R. F., MRS Proceedings Vol. 766 (2003).Google Scholar
16. Gorman, B. P., Orozco-Teran, R. A., Zhang, Z., Matz, P. D., Mueller, D. W., and Reidy, R. F., J. Vac. Sci. Technol. B, 22, 3, 12101212 (2004).Google Scholar
17. Xie, B., Muscat, A. J., Microelectronic Engineering, 80, 349 (2005).Google Scholar
18. Iacopi, F., Travaly, Y., Eyckens, B., Waldfried, C., Abell, T., Guyer, E. P., Gage, D. M., Dauskardt, R. H., Sajavaara, T., Houthoofd, K., Grobet, P., Jacobs, P., Maex, K., J. of Appl. Phys., 99, 053511 (2006).Google Scholar
19. Socrates, G., Infrared Characteristic Group Frequencies, 2nd edition, John Wiley & Sons, (1994).Google Scholar
20. Grill, A. and Neumayer, D. A., J. Appl. Phys., 94, 6697 (2003).Google Scholar
21. Lin, Y., Tsui, T. Y., and Vlassak, J. J., Journal of the Electrochemical Society, 153(7), F144–F152 (2006).Google Scholar
22. Posseme, N., Chevolleau, T., David, T., Darnon, M., Louveau, O., and Joubert, O., J. Vac. Sci. Technol. B, 25 (6), 19281940 (2007).Google Scholar
23. Shi, H., Bao, J., Liu, J., Huang, H., Smith, R. S., Zhao, Q., Ho, P. S., Goodner, M. D., Moinpour, M., and Kloster, G. M., the Advanced Metallization Conference 2007, VB.3.Google Scholar
24. Liu, J., Kim, W., Bao, J., Shi, H., Baek, W., and Ho, P. S., J. Vac. Sci. Technol. B, 25 (3), 906 (2007).Google Scholar
25. Chang, T. C., Liu, P. T., Mor, Y. S., Tsai, T. M., Chen, C. W., Mei, Y. J., Pan, F. M., Wu, W. F., Sze, S. M., J. Vac. Sci. Technol. B, 20 (4), 1561 (2002).Google Scholar
26. Nitta, S. V., Purushothaman, S., Chakrapani, N., Rodriguez, O., Klymko, N., Ryan, E. T., Bonilla, G., Cohen, S., Molis, S., McCullough, K., Advanced Metallization Conference 2005.Google Scholar
27. Gun'ko, V. M., Vedamuthu, M. S., Henderson, G. L., and Blitz, J. P., Journal of Colloid and Interface Science 228, 157170 (2000).Google Scholar