Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T22:25:47.839Z Has data issue: false hasContentIssue false

Dielectric Properties of Organic-Inorganic Hybrids: PDMS-Based Systems

Published online by Cambridge University Press:  15 February 2011

G. Teowee
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell, Tucson, AZ 85712
K. C. McCarthy
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell, Tucson, AZ 85712
C. D. Baertlein
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell, Tucson, AZ 85712
J. M. Boulton
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell, Tucson, AZ 85712
S. Motakef
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
T. J. Bukowski
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
T. P. Alexander
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
D. R. Uhlmann
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
Get access

Abstract

Organic-inorganic hybrids, with tailorable properties via control of their chemistries, offer great potential for many optical, electrical and mechanical applications. PDMS-based materials have been fabricated, having low optical losses of < 0.15 dB/cm but the dielectric properties of these hybrids have rarely been explored or reported. In the present study, the dielectric properties of PDMS:SiO2:TiO2 films are explored as a function of composition and curing temperature using an impedance analyzer. Dielectric spectroscopy was also performed to investigate the dielectric relaxation and dispersion behaviors. Results indicate that εr at 1 MHz ranges from 3 to 5. Residual hydroxyl and alkoxy species in the films contribute to the overall polarizabilities especially at low frequencies ( < 100 kHz).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, H. H., Orler, B. and Wilkes, G. K., Polym. Bull., 14, 557(1985).Google Scholar
2. Huang, H. H., Orler, B. and Wilkes, G. K., Polym. Preprints, 26, 300(1985).Google Scholar
3. Huang, H. H., Orler, B. and Wilkes, G. K., Macromol., 20, 1322(1987).Google Scholar
4. Huang, H. H., Orler, B. and Wilkes, G. K., Polym. Preprints, 28, 434(1987).Google Scholar
5. Glaser, R. H. and Wilkes, G. L., Polym. Preprints, 28, 236(1987).Google Scholar
6. Parkhurst, C. S., Doyle, W. F., Silverman, L. A., Singh, S., Anderson, M. P., McClurg, D., Wnek, G. E. and Uhlmann, D. R., MRS Symp. Proc., 73, 769(1986).Google Scholar
7. Glaser, R. H. and Wilkes, G. L., Polym. Bull., 19,51(1988).Google Scholar
8. Sanchez, C. and In, M., J.Non-Cryst. Solids, 147–148, 1(1992).Google Scholar
9. Gauthier-Muneau, I., Mosset, A. and Daly, J., J.Mater. Sci., 25, 3739(1990).Google Scholar
10. Rodrigues, D. E., Brennan, A. B., Betrabet, C., Wang, B. and Wilkes, G. L., Chem. Mater., 4, 1437(1992).Google Scholar
11. Motakef, S., Suratwala, T., Roncone, R. L., Boulton, J. M., Teowee, G. and Uhlmann, D. R., J.Non- Cryst. Solids, 178, 37 (1994).Google Scholar
12. Schmidt, H. in Sol-gel Science & Technology (ed. Aegerter, M.A., Jafelicci, M. Jr., Souza, D. F. and Zanotto, E. D., World Scientific, Singapore, 1989), 432 Google Scholar
13. Schmidt, H., DVS-Berichte, 110, 54(1988).Google Scholar
14. Schmidt, H. and Wolter, H., J.Non-Cryst. Solids, 121, 428(1990).Google Scholar
15. Silicon Compounds Register and Review, United Chemical Technogies, Inc., 1991.Google Scholar
16. Teowee, G., Boulton, J. M., Fox, H. H., Koussa, A., Gudgel, T. and Uhlmann, D. R., MRS Symp. Proc., 180, 407(1990).Google Scholar
17. Jonscher, A. K., Dielectric Relaxation, Chelsea Dielectric Press, London, 1983.Google Scholar