Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T17:26:32.377Z Has data issue: false hasContentIssue false

Dielectric Permittivity Enhancement in PZT by Light Doping with Gd

Published online by Cambridge University Press:  26 February 2011

Jorge J. Portelles
Affiliation:
[email protected], Universidad de La Habana, Facultad de Fisica, San Lazaro y L, Vedado, La Habana 10400, Cuba
Nelson S Almodovar
Affiliation:
[email protected], Universidad de La Habana, Facultad de Fisica, San Lazaro y L, Vedado, La Habana, 10400, Cuba
Juan Fuentes
Affiliation:
[email protected], Universidad de La Habana, Facultad de Fisica, San Lazaro y L, Vedado, La Habana, 10400, Cuba
Eduardo Martinez
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Materia Condensada, Km. 107 Carretera Tijuana-Ensenada, Ensenada, 22860, Mexico
Oscar Raymond
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Materia Condensada, Km. 107 Carretera Tijuana-Ensenada, Ensenada, 22860, Mexico
Jesus L Heiras
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Materia Condensada, Km. 107 Carretera Tijuana-Ensenada, Ensenada, 22860, Mexico
Jesus M Siqueiros
Affiliation:
[email protected], Universidad Nacional Autonoma de Mexico, Centro de Ciencias de la Materia Condensada, Km. 107 Carretera Tijuana-Ensenada, Ensenada, 22860, Mexico
Get access

Abstract

PbZr0.53Ti0.4703 doped with 0.6% at. of Gd2O3 has been produced following the traditional solid state reaction technique. The ferro-paraelectric transition temperature is reduced from 386 °C to 352 °C. Remnant polarization and coercive field measurements were made from the hysteresis loops obtained at 23 °C and at different applied electric fields up to a maximum of 17 kV/cm. Piezoelectric performance was studied in the 4 Hz to 4 MHz frequency range at 25 °C and the radial electromechanical coupling factor was determined. A detailed electrical conductivity study in the 30-450 °C temperature range is performed in a wide frequency interval. The different participating transport mechanisms are elucidated and the corresponding activation energies were determined by fitting the experimental data. In particular, in the 30 to 300 °C temperature interval, the ac conductivity follows Jonscher universal relaxation law.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramic, Academic Press, London and New York, (1971).Google Scholar
2. Lines, M. E. and Glass, A. M., Principles and Appl. of Ferroelectrics and Related Materials, Oxford, (1977).Google Scholar
3. Shannigrahi, R., Choudhary, R.N.P., Acharya, H. N., Materials Letters 39, 318323, (1999)Google Scholar
4. Parashar, S. K. S., R. N. P.Choudhary, B.S.Murty, J. Appl. Phys., 94, 6091 (2003).Google Scholar
5. Damjanovic, Dragan, Rep. Prog. Phys. 61, 12671324, (1998)Google Scholar
6. Fernández, J. F., Moure, C., Villegas, M., Durán, P., Kosec, M., J. Eur. Ceram. Soc. 18, 16951705, (1998).Google Scholar
7. Smolenskii, G. A., Bokov, V. A., J. Appl. Phys. 35, 3, 915–918, (1964).Google Scholar
8. Boukanp, Bernard A., Pham, Mai T.N., Blank, Dave H. A., Solid State Ionics 170, 239254, (2004)Google Scholar
9. Pdungsap, L., Udomkan, N., Boonyuen, S., Winotai, P., Sensor and Actuators A 122, 250256, (2005).Google Scholar
10. Pilgrim, S. M., Sutherland, A. E., Winzer, S. R., J. Am. Ceram. Soc. 73, 3122, (1990).Google Scholar
11. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176–1987. Published by The institute of Electrical and Electronics Engineers, New York. USA.Google Scholar
12. Raymond, O., Font, R., Suárez, N., Portelles, J., Siqueiros, J.M., J. App. Physics, 97, 1 (2005)Google Scholar
13. Modak, D.K., Mandal, U.K., Sadhukhan, M., Chaudhuri, B.K., Komatsu, T., J.of Mat. Sc. 36, 2539, (2001)Google Scholar
14. Jonscher, A. K., J.Phys. D: Appl.. Phys. 32 R57, (1999).Google Scholar
15. Patankar, K. K., Mathe, V.L., Patil, A. N., Patil, S. A., Lotke, S. D., J.of Electr. 6:2, 115, (2001)Google Scholar
16. Park, C.H., Chadi, D.J., Physical Review B, 57, (1998).Google Scholar