Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:37:58.485Z Has data issue: false hasContentIssue false

Diamond Sensors and Vacuummicroelectronics

Published online by Cambridge University Press:  10 February 2011

L. S. Pan*
Affiliation:
Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550
Get access

Abstract

This paper will cover two diverse electronic applications for which diamond devices have shown great promise. The first application is diamond radiation sensors for high radiation environments, where the competition is mainly silicon devices. These environments arise in high energy physics experiments, and tests show diamond to be superior to silicon in many ways. The second application is vacuum microelectronics, which generally refers to field emission, where the main competitor is metal and semiconductor microtip arrays. Certain diamond and diamondlike carbon materials emit electrons readily, but the physical mechanisms for this are not well understood. Negative electron affinity and other possible explanations are discussed in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dreifus, D. L., Diamond: Electronic Properties and Applications, edited by Pan, L. S. and Kania, D. R., Kluwer Academic Publishers, 1994, Ch. 10.Google Scholar
2. Davidson, J. L. in Symposium DD: Diamond for Electronic Applications (Mater. Res. Soc. Proc. Fall, Boston, MA 1995), DD8.1.Google Scholar
3. McKeag, R. D., Whitfield, M. D., Chan, S. S-M., Pang, L. Y-S. and Jackman, R. B. in Symposium DD: Diamond for Electronic Applications (Mater. Res. Soc. Proc. Fall, Boston, MA 1995), DD8.3.Google Scholar
4. Foulon, F., Jany, C. and Pocket, T. in Symposium DD: Diamond for Electronic Applications (Mater. Res. Soc. Proc. Fall, Boston, MA 1995), DD8.4.Google Scholar
5. Symposium DD: Diamond for Electronic Applications (Mater. Res. Soc. Proc. Fall, Boston, MA 1995), DD8.5 through DD8.14.Google Scholar
6. Kania, D. R., Landstrass, M. I., Plano, M. A., Pan, L. S. and Han, S., Diamond and Related Materials 2, p. 1012 (1993).Google Scholar
7. Han, S., Pan, L. S. and Kania, D. R., Diamond: Electronic Properties and Applications, edited by Pan, L. S. and Kania, D. R., Kluwer Academic Publishers, 1994, Ch. 6.Google Scholar
8. Pan, L. S., Han, S., Kania, D. R., Plano, M. A. and Landstrass, M. I., Diamond and Related Materials 2, p. 1012 (1993).Google Scholar
9. Kozlov, S. F., Stuck, R., Hage-Ali, M. and Siffert, P., IEEE Trans. Nucl. Sci. NS–22, p. 160 (1975).Google Scholar
10. Ager, J. W., III, et al., J. Appl. Phys. 76 (7), p. 4050 (1994).Google Scholar
11. Bauer, C., et al. (RD42 collaboration), CERN Report/LHCC 95-43 (1995).Google Scholar
12. Bauer, C., et al. (RD42 collaboration), in preparation.Google Scholar
13. Bauer, C., et al. (RD42 collaboration), submitted to Nucl. Instr. Meth.Google Scholar
14. Bauer, C., et al. (RD42 collaboration), in preparation.Google Scholar
15. Teserak, R. J., et al., Nucl. Instr. and Meth. A 349, p. 96 (1994).Google Scholar
16. Borchelt, F., et al., Nucl. Instr. and Meth. A 354, p. 318 (1995).Google Scholar
17. Han, S., et al., unpublished data.Google Scholar
18. Plano, M. A., et al., Appl. Phys. Lett. 64 (2), p. 193 (1994).Google Scholar
19. Han, S., et al., in preparation.Google Scholar
20. Mearini, G. T., Krainsky, I. L., Dayton, J. A. Jr. Wang, Y., Zorman, C. A., Angus, J. C. and Hoffman, R. W., Appl. Phys. Lett. 65 (21), p. 2702 (1994).Google Scholar
21. Geis, M., Efremow, N. N., Woodhouse, J. D., McAleese, M. D., Marchywka, M., Socker, D. G., and Hochedez, J. F., IEEE Electron Dev. Lett. 12 (8), p. 456 (1991).Google Scholar
22. Xu, N. S., Tzeng, Y. and Latham, R. V., J. Phys. D 26, p. 1776 (1993); 27, p. 1988 (1994).Google Scholar
23. Okano, K. and Gleason, K. K., Electron. Lett. 31 (1), p. 74 (1995).Google Scholar
24. Hong, D. and Aslam, M., J. Vac. Sci. Technol. B 13 (2), p. 427 (1995).Google Scholar
25. Feng, Z., Brown, I. G. and Ager, J. W., III, J. Mater. Res. 10 (7), p. 1585 (1995).Google Scholar
26. Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L., J. Appl. Phys. 78 (4), 2707 (1995).Google Scholar
27. Himpsel, F. J., Knapp, J. A., VanVechten, J. A. and Eastman, D. E., Phys. Rev. B 20 (2), p.624 (1979).Google Scholar
28. Pate, B. B., Hecht, M. H., Binns, C., Lindau, I. and Spicer, W. E., J. Vac. Sci. Technol. 21 (2), p. 364 (1982).Google Scholar
29. van der Weide, J. and Nemanich, R. J., J. Vac. Sci. Technol. B 10 (4), p. 1940 (1992); 12 (4), p. 2475 (1994).Google Scholar
30. van der Weide, J. and Nemanich, R. J., Phys. Rev. B 49 (19), p. 13629 (1994); 50 (8), p.5803 (1994).Google Scholar
31. Malta, D. P., et al., (Mat. Res. Soc. Symp. Proc. 339, 1994).Google Scholar
32. Bandis, C., Haggerty, D. and Pate, B. B., (Mater. Res. Soc. Proc. 339, 1994).Google Scholar
33. Bandis, C. and Pate, B. B., Phys. Rev. Lett. 74 (5), p. 777 (1995).Google Scholar
34. Baumann, P. K. and Nemanich, R. J., Diamonds and Rel. Mat. 4, p. 802 (1995).Google Scholar
35. Wang, C., Garcia, A., Ingram, D.C., Lake, M. and Kordesch, M. E., Electron. Lett. 27 (16), p. 1459 (1991).Google Scholar
36. Bell, R. L., Negative electron affinity devices, Claredon Press, London, 1973.Google Scholar
37. Photoemission performed at the Stanford Synchrotron Radiation Laboratory (SSRL). Field emission performed at the Electron Emission Characterization Facility (EECF) at Sandia National Laboratories (SNL-CA).Google Scholar
38. Cao, R., Fox, C. A., Pan, L. S., Vergara, G., in preparation.Google Scholar
39. Pickett, W. E., Phys. Rev. Lett. 73 (12), p. 1664 (1994).Google Scholar
40. Fox, C. A., et al., in Symposium DD: Diamond for Electronic Applications (Mater. Res. Soc. Proc. Fall, Boston, MA 1995), DD8.10.Google Scholar
41. Amaratunga, G. A. J., et al., J. of Non-Cryst. Solids 164–166, p. 1119 (1993).Google Scholar
42. Huang, Z.-H., Cutler, P. H., Miskovsky, N. M. and Sullivan, T. E., J. Vac. Sci. Technol. B 13 (2), p. 526 (1995).Google Scholar
43. Pate, B. B., et al., J. Vac. Sci. Technol. 19, p. 349 (1981).Google Scholar
44. Kubiak, G. D. and Kolasinski, K. W., Phys. Rev. B 39, p. 1381 (1989).Google Scholar
45. Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L., J. Appl. Phys. 78 (4), p. 2707 (1995).Google Scholar
46. Geis, M. W., Twichell, J. C., Macaulay, J. and Okano, K., Appl. Phys. Lett. 67 (9), p. 1328 (1995).Google Scholar
47. Farrer, R. G., Solid State Comm. 7, p. 685 (1969).Google Scholar
48. Givargizov, E. I., Zhirnov, V. V., Kuznetsov, A. V. and Plekhanov, P. S., Technical Digest from the Eighth International Vacuum Microelectronics Conf., p. 345 (1995).Google Scholar
49. Geis, M. W., et al., Applied Diamond Conference 1995, Gaithersburg, MD. Google Scholar
50. Bayliss, K. H. and Latham, R. V., Proc. R. Soc. Lond. A 403, p. 285 (1986).Google Scholar
51. Hurley, R. E., J. Phys. D 12, p. 2229 (1979).Google Scholar
52. Xu, N. S. and Latham, R. V., J. Phys. D 19, p. 477 (1986); Surf. Sci. 274, p. 147 (1992).Google Scholar
53. Latham, R. V., IEEE Trans. Electr. Insul. 23 (5), p. 881 (1988).Google Scholar
54. Talin, A., et al., J. Vac. Sci. Technol., submitted.Google Scholar
55. Pan, L. S., Felter, T. E., Talin, A. A., Ohlberg, D. A. A., Fox, C. A., Han, S. and Ager, J. W. III, Diamond Films ‘95, Barcelona, Spain, 1995.Google Scholar
56. Zhu, W., Kochanski, G. P., Jin, S., Seibles, L., Jacobson, D. C., McCormack, M. and White, A. E., Appl. Phys. Lett. 67 (8), p. 1157 (1995).Google Scholar
57. Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J. and Collins, C. B., J. Mater. Res. 5 (11), p. 2398 (1990).Google Scholar
58. Kumar, N., Schmidt, H. and Xie, C., Solid State Technol. May 1995, p. 71.Google Scholar
59. Kumar, N., Fink, R., Xie, C., Fredin, L., Jamison, K. and Schmidt, H., Proc. of the Amer. Vac. Soc., Minneapolis, MN (1995).Google Scholar