Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T16:57:16.286Z Has data issue: false hasContentIssue false

Diamond Doping by Low Energy Ion Implantation During Growth

Published online by Cambridge University Press:  21 February 2011

K.D. Jamison
Affiliation:
S.I. Diamond Technology, Inc., 2435 North Blvd., Houston, TX 77098
H.K. Schmidt
Affiliation:
S.I. Diamond Technology, Inc., 2435 North Blvd., Houston, TX 77098
D. Eisenmann
Affiliation:
S.I. Diamond Technology, Inc., 2435 North Blvd., Houston, TX 77098
R.P. Hellmer
Affiliation:
S.I. Diamond Technology, Inc., 2435 North Blvd., Houston, TX 77098
Get access

Abstract

A novel method of implanting dopant material in diamond using low energy ions during growth is described. In this method, relatively low energy (∼10 KeV) dopant ions are directed through an aperture into a hot filament chemical vapor deposition growth chamber and onto the growing diamond sample. Collisions with the gas molecules in the growth chamber (∼10 Torr of a 99.5% H2 - 0.5% CH4 gas mixture) partially neutralize the ion beam and slow the dopant atoms down to a few hundred electron volts before striking the growing diamond crystal. The residual energy is large enough to embed the dopant atoms a few layers deep in the crystal but not large enough to cause significant lattice damage. Continued doping during growth yields uniformly doped material throughout the implanted region. Results for sodium, rubidium, and phosphorus atom doping are presented with sodium found to be a p-type dopant and phosphorus a deep n-type dopant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 For a comprehensive review of diamond growth and characterization see MRS Proceedings of the Second International Conference on “New Diamond Science and Technology”, Washington, D.C. 1990 and references therin.Google Scholar
2 Mort, J., Kuhman, D., Machonkin, M., Morgan, M., Jansen, F., Okumura, K., LeGrice, Y. M, and Nemanich, R.J., Appl. Phys. Lett. 55, 1121 (1989).CrossRefGoogle Scholar
3 Geis, M.W., Rathman, D.D., Erlich, D.J., Murphy, R.A. and Lindley, W.T., IEEE Electron. Dev. Lett. 8, 341 (1987).Google Scholar
4 Kajihara, S.A., Antonelli, A., and Bernholc, J., Mat. Res. Soc. Syp. Proc. 162, Boston, 315 (1990).Google Scholar
5 Okano, K., Iwasaki, T., Kiyota, H., Kurosu, T. and lida, M., Thin Solid Films 206, 183 (1991).Google Scholar
6 Okano, K., Kiyota, H., Iwasaki, T., Nakamura, Y., Akiba, Y., Kurosu, T., Idida, M., and Nakamura, T., Appl. Phys. A51, 332 (1990).Google Scholar
7 Vavilov, V.S., Radiation Effects 37, 229 (1978).Google Scholar
8 Okumura, K., Mort, J., and Machonkin, M., Appl. Phys. Lett. 57, 1907 (1990).Google Scholar
9 Vavilov, V.S., Konorova, E.A., Stepanova, E.B., and Trukhan, E. M., Sov. Phys. Semicond. 13, 635 (1979).Google Scholar
10 Spits, R.A., Derry, T.E., Prins, J.F. and Sellschop, J.P.F., Nuc. Inst. and Methods in Phys. Res. B59, 1336 (1991).Google Scholar
11 Ota, Y., J. Appl. Phys., 51 (1980) 1102.CrossRefGoogle Scholar
12 Denhoff, M.W., Houghton, D.C., Jackman, T.E., Swanson, M.L., and Parikh, N.R., J. Appl. Phys. 64, (1988) 3938.CrossRefGoogle Scholar
13 Hasan, M.A., Knall, J., Barnett, S.A., Sundgren, J.E., Markert, L.C., Rockett, A., and Green, J. E., J. Appl. Phys. 65, (1989) 172.Google Scholar
14 SIMS analysis was performed by Charles Evans & Associates, 301 Chesapeake Dr, Redwood City, CA 94063.Google Scholar
15 Houssay, P.R. de la, Penchina, C.M., Hewett, C.A., Zeidler, J. R., Wilson, R.G., J. Appl. Phys. 71, (1992) 3220.Google Scholar
16 Kajihara, S.A., Antonellli, A., and Bernholc, J., Phys. Rev. Lett. 66, 2010 (1991).Google Scholar