No CrossRef data available.
Article contents
Development of pyrolytic monolithic carbon composites for the conditioning of spent ion exchange resins
Published online by Cambridge University Press: 28 March 2012
Abstract
The pyrolysis of ion exchange resin beads that are used for the purification of water in reactor primary- and secondary-cooling circuits can result in stable and leach resistant carbonaceous products. However, free flowing beads are less desirable waste forms for disposal in sub-surface or surface repositories than monolithic masses of low porosity. We have investigated the pyrolysis of polymeric resin – cation exchange resin composites to give mechanically robust and chemically durable monolithic carbonaceous waste forms that are suitable for repository disposition. Also investigated was the dependence of product properties on various processing parameters (temperature ramp and final temperature). As a first approach, epoxy resins were used for the preparation of monoliths since such resins cure at room temperature and result in a relatively high carbon yield. Carbonaceous monolithic products were prepared at 400, 500, 600, 700 and 800 °C using a temperature ramp of 2°C/min. The products were maintained at the chosen temperatures for a period of one hour. Mass losses, volume reduction, hardness and compressive strength were measured and mathematical functions are proposed to describe the measured values of these properties. The carbon monoliths were observed to be mechanically robust.
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1475: Symposium NW – Scientific Basis for Nuclear Waste Management XXXV , 2012 , imrc11-1475-nw35-p41
- Copyright
- Copyright © Materials Research Society 2012