Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T09:16:13.311Z Has data issue: false hasContentIssue false

Development of Novel Multiferroic Composites Based on BaTiO3 and Hexagonal Ferrites

Published online by Cambridge University Press:  31 January 2011

D. V. Karpinsky
Affiliation:
[email protected], University of Aveiro, Aveiro, Portugal
E. K. Selezneva
Affiliation:
[email protected], University of Aveiro, Aveiro, Portugal
Igor Bdikin
Affiliation:
[email protected], UA, Aveiro, Aveiro, 3810-193, Portugal
F. Figueiras
Affiliation:
[email protected], University of Aveiro, Aveiro, Portugal
K. E. Kamentsev
Affiliation:
[email protected], MIREA, Moscow, Russian Federation
Yuri Fetisov
Affiliation:
[email protected], MIREA, Moscow, Russian Federation
R. C. Pullar
Affiliation:
[email protected], Imperial College, London, United Kingdom
J. Krebbs
Affiliation:
[email protected], Imperial College, London, United Kingdom
N. M. Alford
Affiliation:
[email protected], Imperial College, London, United Kingdom
A. L. Kholkin
Affiliation:
[email protected], University of Aveiro, CICECO, Campus de Santiago, Aveiro, 3810-193, Portugal
Get access

Abstract

A new multiferroic composite ceramics with the general formula (x)Ba(Sr)Fe12O19-(1-x)BaTiO3 (x=0.1, 0.5) was synthesized via a simple solid-state reaction technique. Crystal structure analysis performed for both materials revealed the presence of two crystalline phases pertinent to the initial composite components. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to testify the crystallinity, microstructure, and local magnetoelectric interactions between ferroelectric and ferromagnetic grains. Magnetic measurements revealed that the saturation magnetization is proportional to the volume fraction of ferrite phase. Dielectric studies demonstrated strong frequency relaxation due to space charge polarization and high conductivity loss making macroscopic magnetoelectric measurements difficult. Novel nanoscale magnetoelectric effect observed by AFM is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wang, J. Neaton, J. B. Zheng, H. Nagarajan, V. Ogale, S. B. Liu, B. Viehland, D., Vatihyanathan, V., Schlom, D. G. Waghmare, U. V. Spaldin, N. A. Rabe, K. M. Wuttig, M. and Ramesh, R. Science 299, 1719 (2003)Google Scholar
2 Hill, N. A. J. Phys. Chem. B 104, 6694 (2000)Google Scholar
3 Shannigrahi, S. R. Huang, A. Chandrasekhar, N. Tripathy, D. and Adeyeye, A. O. Appl. Phys. Lett. 90, 022901 (2007)Google Scholar
4 Nan, Ce-Wen, Bichurin, M. I. Dong, Shuxiang, Viehland, D. Srinivasan, G. J. Appl. Phys. 103, 031101 (2008)Google Scholar
5 Liu, G. Nan, C.W. Xu, Z.K. Chen, H.D. J. Phys D.: Appl. Phys. 38, 2321 (2005)Google Scholar
6 Zhang, H.F. Or, S.W. Chan, H.L.W., J. Appl. Phys. 104, 104109 (2008)Google Scholar
7 Kholkin, A. L. Kalinin, S. V. Roelofs, A. Gruverman, A. “Review of ferroelectric domain imaging by Piezoresponse Force Microscopy”, in “Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale”, Eds. Kalinin, S., Gruverman, A. Springer, 2006, V. 1, pp. 173214 Google Scholar
8 Rodriguez-Carvajal, J., Physica B. 55, 192 (1993)Google Scholar
9 Naranga, S.B. Singh, C. Bai, Y. Hudiara, I.S. Mat. Chem. Phys. 111, 225 (2008)Google Scholar
10 Frey, N.A. Heindl, R. Srinath, S. Srikanth, H. Dudney, N.J. Mat. Res. Bull. 40, 1286 (2005)Google Scholar
11 Frantsevich, I.N. and Tul'chinskii, L.N., Chem. Mater. Sci. 10, 133 (1971)Google Scholar
12 Iqbala, M.J. Ashiqa, M.N. Hernandez-Gomezb, P., Munoz, J.M. J. Magn. Magn. Mat. 320, 881 (2008)Google Scholar