Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:34:30.732Z Has data issue: false hasContentIssue false

Development of Low-Cost Multi-Watt Yellow Lasers Using InGaAs/GaAs Vertical External-Cavity Surface-Emitting Lasers

Published online by Cambridge University Press:  01 February 2011

Mahmoud Fallahi
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, 1630 E. University Blvd, Tucson, AZ, 85721, United States
Li Fan
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, Tucson, AZ, 85721, United States
Chris Hessenius
Affiliation:
[email protected], University of Arizona, College of Optical Sciences, Tucson, AZ, 85721, United States
Jorg hader
Affiliation:
[email protected], University of Arizona, ACMS, Tucson, AZ, 85721, United States
Hongbo Li
Affiliation:
[email protected], University of Arizona, ACMS, Tucson, AZ, 85721, United States
Jerome Moloney
Affiliation:
[email protected], University of Arizona, ACMS, Tucson, AZ, 85721, United States
Wolfgang Stolz
Affiliation:
[email protected], Philipps Universitat, Marburg, N/A, Germany
Stephan Koch
Affiliation:
[email protected], Philipps Universitat, Marburg, N/A, Germany
James Murray
Affiliation:
[email protected], Arate Associates, Longmont, CO, 80501, United States
Get access

Abstract

We demonstrate a highly strained InGaAs/GaAs VECSEL operating at 1173 nm with more than 8.5 W output power and tunable over 40 nm. High-efficiency yellow-orange emission is then achieved by intra-cavity frequency doubling. Over 5 W of CW output power in the 585-589 nm spectral regions is achieved. This compact low-cost high-power yellow-orange laser provides an innovative alternative for sodium guidestar lasers or other medical / communication applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sadick, N.S. and Weiss, R. J. Dermatol. Surg., 28, 2123 (2002).Google Scholar
2. Blodi, C.F. Russell, S.R. Padilo, J.S. and Folk, J.C., Ophtalmology, 6, 791795 (1990).Google Scholar
3. Max, C.E. Oliver, S.S. Friedman, H.W. An, J. Avicola, K. Beeman, B.W. Bissinger, H.D. Brase, J.M., Erbert, G.V. Gavel, D.T. Kanz, K. Liu, M.C. Macintosh, B. Neeb, K.P. Patience, J. Waltjen, K.E. Science, 277, 16491651 (1997).Google Scholar
4. Burns, Phillip A. Dawes, Judith M., Dekker, Peter, Piper, James A., Li, Jing, Wang, Jiyang, Opt. Commun., 207, 315320, (2002).Google Scholar
5. Georgiew, D. Gapontsev, V.P. Dronov, A.G. Vyatkin, M.Y. Rulkov, A.B. Popov, S.V. Taylor, J.R., Opt. Express, 13, 67726776 (2005).Google Scholar
6. Bienfang, Joshua C., Denman, Craig A., Grime, Brent W., Hillman, Paul D., Moore, Gerald T., and Telle, John M., Optics Letters, 28, 22192221 (2003).Google Scholar
7. Dianov, Evgeny, Shubin, Alexey, Melkumov, Mikhail, Medvedkov, Oleg, and Bufetov, Igor, J. Opt. Soc. Am. B, Doc. ID 75675 (posted 11/27/2006, in press).Google Scholar
8. Fan, L. Fallahi, M. Murray, J. T. Bedford, R. Kaneda, Y. Hader, J. Zakharian, A. R. Moloney, J. V., Koch, S. W. and Stolz, W. Appl. Phys. Lett., 88, 021105 (2006).Google Scholar
9. Hader, J. Moloney, J.V. Fallahi, M. Fan, L. Koch, S.W. Optics Lett., 31, 3300 (2006).Google Scholar