Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T11:43:03.491Z Has data issue: false hasContentIssue false

Development of Improved Precursors for the MOCVD of Bismuth Titanate

Published online by Cambridge University Press:  11 February 2011

Paul A. Williams
Affiliation:
Epichem Limited, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK
Anthony C. Jones
Affiliation:
Epichem Limited, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK Department of Chemistry and Surface Science Research Centre, University of Liverpool, Liverpool, L69 7ZD, UK
Neil L. Tobin
Affiliation:
Department of Chemistry and Surface Science Research Centre, University of Liverpool, Liverpool, L69 7ZD, UK
Paul A. Marshall
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, Liverpool, L69 3BX, UK
Paul R. Chalker
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, Liverpool, L69 3BX, UK
Hywel O. Davies
Affiliation:
Epichem Limited, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK
Lesley M. Smith
Affiliation:
Epichem Limited, Power Road, Bromborough, Wirral, Merseyside, CH62 3QF, UK
Get access

Abstract

Bismuth titanate thin films have been grown by liquid injection MOCVD using Bi(mmp)3 in combination with the new Ti precursors Ti(OPri)2(mmp)2 and Ti(mmp)4 (mmp = OCMe2CH2OMe). Films were grown on Si(100) substrates over the temperature range 300 – 600°C, and were shown to consist predominantly of the Bi4Ti3O12 phase at substrate temperatures > 500°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paz de Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature, 374, 627 (1995).Google Scholar
2. Wang, H., Fu, S.X. and Shang, S.X., J. Appl. Phys., 73, 7963 (1993)Google Scholar
3. Si, J. and Desu, S.B., J. Appl. Phys., 73, 7910 (1993).Google Scholar
4. Jiang, B., Peng, J.L., Bursill, L.A. and Wang, H., Mod. Phys. Lett., B, 13, 933 (1999).Google Scholar
5. Neumayer, D.A., Duncombe, P.R., Laibowitz, R.B., Shaw, T., Purtell, R. and Grill, A., Integr. Ferroelectrics, 21, 331 (1998).Google Scholar
6. Watanabe, T. and Funakubo, H., Jpn. J. Appl. Phys., 39, 5211 (2000)Google Scholar
7. Williams, P.A., Jones, A.C., Crosbie, M.J., Wright, P.J., Bickley, J.F., Steiner, A., Davies, H.O., Leedham, T.J. and Critchlow, G.W., Chem. Vap. Deposition, 7, 205 (2001).Google Scholar
8. Jones, A.C., J. Mater. Chem., 12, 2576 (2002).Google Scholar
9. Migita, S., Oto, H. and Fujino, H., J. Cryst. Growth, 200, 161 (1999).Google Scholar
10. Jiang, A.Q., Chen, Z.H., Chen, F., Zhou, Y.L., He, M. and Yang, G.Z., Physical Review B, 63 104102 (2001).Google Scholar
11. Meng, J. F., Katiyar, R. S. and Zou, G. T., J. Raman Spectroscopy, 28, 797 (1997)Google Scholar