Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:07:28.828Z Has data issue: false hasContentIssue false

Development of Human IgE Biosensor Using TFBAR Devices with Shear Mode ZnO Piezoelectric Thin Films

Published online by Cambridge University Press:  22 May 2014

Ying-Chung Chen
Affiliation:
Department of Electrical Engineering, National Sun Yat-Sen University, No.70 Lienhai Rd., Kaohsiung 80424, Taiwan.
Wei-Tsai Chang
Affiliation:
Department of Electrical Engineering, National Sun Yat-Sen University, No.70 Lienhai Rd., Kaohsiung 80424, Taiwan.
Chien-Chuan Cheng
Affiliation:
Department of Electronic Engineering, De Lin Institute of Technology, No.1, Ln. 380, Qingyun Rd., Tucheng Dist, New Taipei City 23654, Taiwan.
Jia-Ming Jiang
Affiliation:
Department of Electrical Engineering, National Sun Yat-Sen University, No.70 Lienhai Rd., Kaohsiung 80424, Taiwan.
Kuo-Sheng Kao*
Affiliation:
Department of Computer and Communication, Shu-Te University, No.59, Hengshan Rd., Yanchao Dist., Kaohsiung City 82445, Taiwan.
Get access

Abstract

A novel allergy biosensor is designed and fabricated by using thin film bulk acoustic resonator (TFBAR) devices with shear mode ZnO piezoelectric thin films. To fabricate TFBAR devices, the off-axis RF magnetron sputtering method for the growth of piezoelectric ZnO piezoelectric thin films is adopted. The influences of the relative distance and sputtering parameters are investigated. In this report, the piezoelectric ZnO thin films with tilting angle are set by controlling the deposition parameters. The properties of the shear mode ZnO thin films are investigated by X-ray diffraction and scanning electron microscopy. The frequency response is measured using an HP8720 network analyzer with a CASCADE probe station. The resonance frequency of the shear mode is 796.75 MHz. The sensitivity of the shear mode is calculated to be 462.5 kHz·cm2/ng.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wei, C. L., Chen, Y. C., Cheng, C. C., Kao, K. S. and Cheng, P. S., Thin Solid Films 518, 3059 (2010).CrossRefGoogle Scholar
Wei, C. L., Chen, Y. C., Li, S. R., Cheng, C. C., Kao, K. S. and Chung, C. J., Appl. Phys. A 99, 271 (2010).CrossRefGoogle Scholar
Lin, R. C., Chen, Y. C., Chang, W. T., Cheng, C. C., and Kao, K. S., Sens. Actuators A 147, 425 (2008).CrossRefGoogle Scholar
Baron, T., Gachon, D., Romand, J. P., Alzuaga, S., Ballandras, S., Masson, J., Catherinot, L., and Chatras, M., Proceedings of IEEE International Frequency Control Symposium, (2010).Google Scholar
Lakin, K. M., IEEE Trans. Ultrason. Ferroelectrics. Freq. Contr. 52, 707 (2005).CrossRefGoogle Scholar
Kirshnawary, S. V., Rosenbaum, J. F., Horwitz, S. S., and Moore, R. A., Proceedings of IEEE Ultrasonics Symposium, (1990).Google Scholar
Su, Q. X., Kirby, P., Komuro, E., Imura, M., Zhang, Q., and Whatmore, R., IEEE Trans. Microwave Theory Tech. 49(4), 769 (2001).CrossRefGoogle Scholar
Akiyama, M., Nagao, K., Ueno, N., Tateyama, H., and Yamada, T., Vacuum 74, 699 (2004).CrossRefGoogle Scholar
Horowitz, C. M., Monetti, R. A., and Albano, E.V., Phys. Rev. E 63, 066132 (2001)CrossRefGoogle Scholar
Petrov, P. B. Barna, L. Hultman, , andGreene, J. E., J. Vac. Sci. Technol. A 21, S117 (2003).CrossRefGoogle Scholar
Qin, L., Chen, Q., Cheng, H., and Wang, Q. M., IEEE Trans. Ultrason. Ferroelectrics. Freq. Contr. 57, 1840 (2010).Google Scholar
Sauerbrey, G., Z. Physik 155, 206 (1959).CrossRefGoogle Scholar