Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T15:43:45.133Z Has data issue: false hasContentIssue false

Development of High-Throughput substrates for Generating Two-Dimensional Nanoparticles Assemblies and for Screening Protein Adsorption

Published online by Cambridge University Press:  01 February 2011

Rajendra R. Bhat
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
Jan Genzer
Affiliation:
Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

We discuss methods leading to the fabrication of orthogonal substrates comprising surface-anchored polymer brushes, in which the polymer brush grafting density and molecular weight vary independently in two mutually perpendicular directions. We demonstrate that these orthogonal polymer substrates can be used as intelligent combinatorial platforms that facilitate the spatial distribution of nanoparticles and allow screening of protein adsorption on surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Margel, S., Folger, E., Firment, L., Watt, T., Haynie, S., Sogah, D., J. Biomed. Mat. Res. 27, 1463 (1993).Google Scholar
2. Silver, J.H., Hergenrother, R., Lin, J-C., Lim, F., Lin, H-B., Okada, T., Chaudhury, M.K., Cooper, S., J. Biomed. Mat. Res. 29, 535 (1995).Google Scholar
3. Ulman, A., Chem. Rev. 96, 1533 (1996).Google Scholar
4. Xia, Y., Rogers, J.A., Paul, K.E., Whitesides, G.M., Chem. Rev. 99 1823 (1999).Google Scholar
5. Kumar, A., Whitesides, G.M., Science, 263, 60 (1994).Google Scholar
6. Ulman, A., “An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly”, Academic Press, New York, 1991.Google Scholar
7. Husseman, M., Mecerreeys, D., Hanker, C.J., Hedrick, J.L., Shah, R., Abbot, N.L., Angew. Chem. Int. Ed. Engl. 38, 647 (1999).Google Scholar
8. Shah, R., Mecerreyes, D., Husemann, M., Rees, I., Abbot, N.L., Hawker, C.J., Hedrick, J.L. Macromolecules 33, 597 (2000).Google Scholar
9. Jeon, N.L., Choi, I.S., Whitesides, G.M., Kim, N.Y., Laibinis, P.E., Harada, Y., Finnie, K.P., Girolami, G.S., Nuzzo, R.G., Appl. Phys. Letters 75, 4201 (1999).Google Scholar
10. De Boer, B., Simon, H.K., Werts, M.P.L., van der Vegte, E.W., Hadziioannou, G., Macromolecules, 33, 349 (2000).Google Scholar
11. Ghost, P., Lackowski, W.M., Crooke, R.M., Macromolecules 34, 1230 (2001).Google Scholar
12. Jones, D.M., Huck, W.T.S., Adv. Mater. 13, 1256 (2001).Google Scholar
13. Hyun, J., Chilkoti, A., Macromolecules 34, 5644 (2001).Google Scholar
14. Chaudhury, M.K., Whitesides, G.M., Science 256, 1539 (1992).Google Scholar
15. Genzer, J., “Molecular gradients: Formation and applications in soft condensed matter science”, Encyclopedia of Materials Science, edited by Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., (Elsevier, 2002).Google Scholar
16. Meredith, J.C., Karim, A., Amis, E.J., MRS Bull, 27, 330 (2002).Google Scholar
17. Hoogenboom, R., Meir, M.A.R., Schubert, U.S., Macromol. Rapid Commun. 24, 15 (2003).Google Scholar
18. Wu, T., Efimenko, K., Genzer, J., J. Am. Chem. Soc. 124, 9394 (2002).Google Scholar
19. Wu, T., Efimenko, K., Vlček, P., Šubr, V., Genzer, J., Macromolecules 36, 2448 (2003).Google Scholar
20. Tomlinson, M.R., Genzer, J., Macromolecules, 36, 3449 (2003).Google Scholar
21. Tomlinson, M.R., Genzer, J., Chem. Commun. No. 12, 1350 (2003).Google Scholar
22. Wu, T., Genzer, J., Gong, P., Szleifer, I., Vlček, P., Šubr, V., in Polymer Brushes edited by Brittain, W., Advincula, R., Ruehe, J. and Caster, K. (Wiley & Sons, in press 2003).Google Scholar
23. Bhat, R.R., Genzer, J., Chaney, B.N., Sugg, H.W., Liebmann-Vinson, A., Nanotechnology 14, 1145 (2003).Google Scholar
24. Bhat, R.R., Tomlinson, M.R., Genzer, J., Macromol. Rapid Commun., Accepted (2003).Google Scholar
25. Link, S. and El-Sayed, M. A., Inter. Rev. Phys. Chem., 19, 409 (2000).Google Scholar
26. Grabar, K. C., Smith, P. C., Musick, M. D., Davis, J. A., Walter, D. G., Jackson, M. A., Guthrie, A. P. and Natan, M. J., J. Am. Chem. Soc., 118, 1148 (1996).Google Scholar
27. Leckband, D., Sheth, S. and Halperin, A., J. Biomater. Sci. Polymer Edn., 10, 1125 (1999).Google Scholar
28. McPherson, T., Kidane, A., Szleifer, I. and Park, K., Langmuir, 14, 176 (1998).Google Scholar
29. Patten, T. E. and Matyjaszewski, K., Adv. Mater., 10, 901 (1998).Google Scholar
30. Matyjaszewski, K., Miller, P. J., Shkula, N., Immaraporn, B., Belman, A., Luokala, B. B., Siclovan, T. M., Kickelbick, G., Vallant, T., Hoffmann, H. and Pakula, T., Macromolecules, 32, 8716 (1999).Google Scholar
31. Chaudhury, M. K. and Whitesides, G. M., Science, 256, 1539 (1992).Google Scholar
32. Gombotz, W.R., Guanghui, W., Horbett, T. A. and Hoffman, A. S., J. Biomed. Mater. Res., 25, 1546 (1991).Google Scholar
33. Rouce, F. R. Jr, Ratner, B.D. and Horbett, T.A. in Biomaterials: Interfacial Phenomena and Applications edited by Cooper, S.L. and Peppas, N.A. (American Chemical Society, Washington, D.C., 1982), p. 453.Google Scholar
34. Bohnert, J. L., Horbett, T. A., Ratner, B. D., Royce, F. H., Investig. Opth. Vis. Sci. 29, 362 (1988).Google Scholar
35. Morra, M., Cassinelli, C., Langmuir 15, 4658 (1999).Google Scholar
36. Halperin, A., Langmuir, 15, 2525 (1999).Google Scholar