Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T22:35:42.438Z Has data issue: false hasContentIssue false

Development of GaN and InGaN Gratings by Dry Etching

Published online by Cambridge University Press:  10 February 2011

J. W. Lee
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
J. Hong
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
J. D. Mackenzie
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
F. Ren
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill NJ 07974
P. F. Sciortino Jr
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill NJ 07974
Get access

Abstract

Sub-micron periodic gratings with pitch ∼3,000Å were formed in GaN and InGaN using holographic lithography and room temperature ECR BCl3/N2 dry etching at moderate microwave (500W) and rf (100W) powers. The process produces uniform gratings without the need for elevated sample temperatures during the etch step.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kikoyu, H. and Sugimoto, Y., Jap. J. Appl. Phys. 35 L74 (1996).Google Scholar
2. Akasaki, I., Sota, S., Sakai, H., Amano, H., Tanaka, T. and Koike, M., Electron. Lett. 32 1105(1996).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kikoyu, H. and Sugimoto, Y., Jap. J. Appl. Phys. 35 L217 (1996).Google Scholar
4. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kikoyu, H. and Sugimoto, Y., Appl. Phys. Lett. 68 2105 (1996).Google Scholar
5. Huata, K., Mikami, U. and Saitoh, T., J. Vac. Sci. Technol. B2 45 (1984).Google Scholar
6. Yuba, J., Gamo, K., He, X. G., Zhang, Y. S. and Namba, S., Jap. J. Appl. Phys. 22 1211 (1983).Google Scholar
7. Agrawal, G. P. and Dutta, N. K., Long Wavelength Semiconductor Lasers (VanNostrand, NY 1986).Google Scholar
8. Abe, J., Sugimoto, H., Ohnishi, T., Ohtsuka, K., Matsui, T., Yoshiyasu, H. and Nomura, Y., Proc 13th SOTAPOCS Symp., ed, Lee, H. (Electrochem. Soc. Pennington NJ 1991).Google Scholar
9. Hecht, J., The Laser Guidebook, 2nd Ed. (McGraw-Hill NY 1992).Google Scholar
10. Abernathy, C. R., Mat. Sci. Eng. R 14 203 (1995).Google Scholar
11. Abernathy, C. R., MacKenzie, J. D., Bharatan, S. R., Jones, K. S. and Pearton, S. J., Appl. Phys. Lett. 66 1632 (1995).Google Scholar
12. Podlesnik, D. V., Gilgen, H. H., Osgood, R. M. Jr, and Sanchez, A., Appl. Phys. Lett. 43 1083 (1983).Google Scholar
13. Pearton, S. J., Ren, F., Hobson, W. S., Green, C. A. and Chakrabarti, U. K., Semicond. Sci. Technol. 7 1217 (1992).Google Scholar
14. Ren, F., Lothian, J. R., Chen, Y. K., MacKenzie, J. D., Donovan, S. M., Vartuli, C. B., Abernathy, C. R., Lee, J. W. and Pearton, S. J., J. Electrochem. Soc. 143 L217 (1996).Google Scholar
15. Vartuli, C. B., MacKenzie, J. D., Lee, J. W., Abernathy, C. R., Pearton, S. J. and Shul, R. J., J. Appl Phys. 80 2331 (1996).Google Scholar
16. Shul, R. J., Kilcoyne, S. P., Crawford, M. H., Parmeter, J. E., Vartuli, C. B., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 66 1761 (1995).Google Scholar
17. Pearton, S. J., Abernathy, C. R. and Ren, F., Appl. Phys. Lett. 64 2294 (1994).Google Scholar
18. McLane, G. F., Pearton, S. J. and Abernathy, C. R., Proc. Symp. Wide Bandgap Semiconductors and Devices, Vol. 95–21 (Electrochemical Society, Penington NJ 1995) p. 204 Google Scholar
19. Shul, R. J., McClellan, G. B., Pearton, S. J., Abernathy, C. R., Constatine, C. and Barrati, C., Electron. Lett. 32 1408 (1996).Google Scholar
20. Adesida, I., Mahajan, A., Andideh, E., Khan, M. A., Olsen, D. T. and Kuznia, J. N., Appl Phys. Lett. 63 2777(1993).Google Scholar
21. Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H. and Morkoc, H., Appl. Phys. Lett. 64 887 (1994).Google Scholar
22. Ping, A. T., Adesida, I., Khan, M. A. and Kuznia, J. N., Electron. Lett. 30 1895 (1994).Google Scholar
23. Lee, H., Oberman, D. B. and Harris, J. S. Jr, Appl. Phys. Lett. 67 1754 (1995).Google Scholar
24. Pletschen, W., Niegurh, R. and Bachem, K. H., Proc. Symp. Wide Bandgap Semiconductors and Devices,, Vol. 95–21 (Electrochem. Soc. Pennington NJ 1995) p. 241 Google Scholar
25. Gillis, H. P., Choutov, D. A. and Martin, K. P., J. O. M. pp 5055 (1996).Google Scholar
26. Flamm, D. L., in Plasma Etching-An Introduction, ed. Manos, D. M. and Flamm, D. L. (Academic Press. San Diego 1989).Google Scholar
27. Donnelly, V. M., Flamm, D. L., Tu, C. W. and Ibbottson, D. E., J. Electrochem. Soc. 129 253(1982).Google Scholar