Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T05:30:41.587Z Has data issue: false hasContentIssue false

Development of G4 TiAl Alloys by Spark Plasma Sintering

Published online by Cambridge University Press:  28 August 2018

Houria Jabbar
Affiliation:
CNRS ; CEMES (Centre d’Elaboration de Matériaux et d’Etudes Structurales) ; BP 94347, 29 rue J. Marvig, F-31055 Toulouse, France Université de Toulouse ; UPS ; F-31055 Toulouse, France
Jean-Philippe Monchoux
Affiliation:
CNRS ; CEMES (Centre d’Elaboration de Matériaux et d’Etudes Structurales) ; BP 94347, 29 rue J. Marvig, F-31055 Toulouse, France Université de Toulouse ; UPS ; F-31055 Toulouse, France
Marc Thomas
Affiliation:
DMMP/ONERA, 29 Avenue de le Division Leclerc, BP , 92322 Châtillon Cedex, France
Alain Couret
Affiliation:
CNRS ; CEMES (Centre d’Elaboration de Matériaux et d’Etudes Structurales) ; BP 94347, 29 rue J. Marvig, F-31055 Toulouse, France Université de Toulouse ; UPS ; F-31055 Toulouse, France
Get access

Abstract

G4 alloys (Ti51Al47Re1W1Si0.2) are developed by Spark Plasma Sintering (SPS) with the aim to improve the creep resistance of SPS materials. The microstructure is analyzed by Scanning and Transmission Electron Microscopies (SEM and TEM). The mechanical properties at low and high temperatures are measured. The addition of heavy elements does not lead to an improvement of the mechanical strength.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lasalmonie, A., Intermetallics 14,1123 (2006).Google Scholar
2. Thomas, M. and Naka, S., Matériaux et Techniques 1-2,13 (2004).Google Scholar
3. Molénat, G., Thomas, M., Galy, J. and Couret, A., Adv. Eng. Mat. 9, 667 (2007).Google Scholar
4. Munir, Z.A., Anselmi-Tamburini, U. and Ohyanag, M., J. Mater. Sci. 44, 763 (2006).Google Scholar
5. Couret, A., Molénat, G., Galy, J. and Thomas, M., Intermetallics 16, 1134 (2008).Google Scholar
6. Calderon, H.A., Garibay-Febles, V., Umemoto, M. and Yamaguchi, M., Mater. Sci. and Eng. A 329-331, 196 (2002).Google Scholar
7. Grange, M., Raviart, J.L. and Thomas, M., Metal. Trans. A 35A, 2087 (2004).Google Scholar
8. Thomas, M., Raviart, J.L. and Popoff, F., Intermetallics 13, 944 (2005).Google Scholar
9. Wang, Y.H., Lin, J.P., He, Y.H., Wang, Y.L. and Chen, G.L., Intermetallics 16, 215 (2008).Google Scholar
10. Wang, Y.H., Lin, J.P., He, Y.H., Wang, Y.L. and G.L., Mater. Sci. and Eng. A 489, 55 (2008).Google Scholar
11. Couret, A., Phil. Mag. A 79, 1977 (1999).Google Scholar
12. Couret, A., Intermetallics 9, 899 (2001).Google Scholar
13. Sriram, S., Dimiduk, DM., Hazzledine, PM. and Vasudevan, V.K., Phil. Mag A 76, 965 (1997).Google Scholar
14. Viguier, B., Hemker, KJ., Bonneville, J., Louchet, F. and Martin, J.L., Phil. Mag. A 71, 1295 (1995).Google Scholar
15. Zghal, S., Menand, A. and Couret, A., Acta Maert. 46, 5899 (1998).Google Scholar
16. Berteaux, O. and Thomas, M., unpublished results (2008).Google Scholar